dissolution reaction
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 20)

H-INDEX

18
(FIVE YEARS 2)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 131
Author(s):  
Muzhi Yu ◽  
Jin Cui ◽  
Zhichao Tang ◽  
Zinan Shen ◽  
Xiaoyang Chen ◽  
...  

The effect of Er-rich precipitates on microstructure and electrochemical behavior of the Al–Zn–In anode alloy is investigated. The results showed that with the increase in Er content, the microstructure was refined, the amount of interdendritic precipitates gradually increased, and the morphology changed from discontinuous to continuous network gradually. With the addition of Er element, the self-corrosion potential of the Al–5Zn–0.03In–xEr alloy moved positively, the self-corrosion current density decreased, and the corrosion resistance increased. When the Er content was less than 1 wt.%, the addition of Er improved the dissolution state of the Al–5Zn–0.03In–xEr alloy, and increased the current efficiency of the Al–5Zn–0.03In–xEr alloy. When the Er content was more than 1 wt.%, the current efficiency was reduced. The major precipitate of the alloy was Al3Er. According to the element composition of Al3Er in the Al–Zn–In–Er alloy, the simulated-segregated-phase alloy was melted to explain the effect of Al3Er segregation on the electrochemical behavior of alloys, and the polarization curve and AC impedance spectrum of the simulated-segregated-phase alloy and the Al–Zn–In alloy were measured. The results showed that Al3Er was an anodic segregation phase in the Al–Zn–In–Er alloy, and the preferential dissolution of the segregation phase would occur in the alloy, but the Al3Er phase itself was passivated in the dissolution process, which inhibited the further activation of the dissolution reaction of the Al–Zn–In–Er alloy to a certain extent.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Hantao Lin ◽  
Stéphanie Szenknect ◽  
Adel Mesbah ◽  
Fabien Baron ◽  
Daniel Beaufort ◽  
...  

AbstractBrannerite, UTi2O6 is reported to occur in various uraniferous deposits worldwide. Natural brannerite specimens are found in the amorphous state and are usually considered to be refractory to dissolution due to the formation of TiO2 passivation layer. In the present work, brannerite was synthesized by wet chemistry route, then characterized prior the development of multiparametric dissolution experiments. The evolution of U and Ti concentrations was followed in 0.1–2 mol/L H2SO4 solutions, for temperatures ranging from 25 to 80 °C, in the presence (or not) of 2.8 g/L of dissolved Fe(III). The dissolution of synthetic brannerite was congruent in the whole experimental domain. The formation of Ti-enriched secondary phase at the surface of the brannerite grains was not evidenced. The dissolution rate constants, activation energies and partial orders of the overall dissolution reaction relative to proton activity were determined in the presence (or absence) of Fe(III). The introduction of Fe(III) in sulfuric acid solutions increased the dissolution rate constant by 5 orders of magnitude and induced significant modifications of the apparent activation energy (from 71 ± 4 to 91 ± 6 kJ/mol) and of the partial order relative to proton activity (from 0.42 ± 0.09 to 0.84 ± 0.08). This study suggested that the uncongruency of the brannerite dissolution and the changes usually observed in the rate-controlling step with temperature could be linked to the loss of the crystal structure in natural samples.


2021 ◽  
Vol 2 (1) ◽  
pp. 63-73
Author(s):  
Jéssica D. S. Vicente ◽  
Domingas C. Miguel ◽  
Afonso M. P. Gonçalves ◽  
Diogo M. Cabrita ◽  
José M. Carretas ◽  
...  

Ionic liquids are critical reagents for science and technical processes nowadays. Metals are the most used reagents in the industry. It is crucial to have a deeper understanding of how ionic liquids and metals could interact. In this article the interaction of those two families of compounds is accessed. The dissolution (reaction) of metals with ionic liquids is studied, namely the influence of temperature, redox potential, and availability of an oxidant in the process. The final state achieved by the iron metal samples was also addressed by Mössbauer spectroscopy.


2021 ◽  
Vol 322 ◽  
pp. 124519
Author(s):  
Pobitra Halder ◽  
Savankumar Patel ◽  
Sazal Kundu ◽  
Ibrahim Gbolahan Hakeem ◽  
Mojtaba Hedayati Marzbali ◽  
...  

Author(s):  
Jiafeng Lei ◽  
Yanxin Yao ◽  
Zengyue Wang ◽  
Yi-Chun Lu

Aqueous manganese (Mn) batteries based on the deposition-dissolution reaction of Mn2+/MnO2(s) have attracted great attention due to their low cost, high voltage, and high safety. However, the incomplete dissolution of...


Minerals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Jiangyan Yuan ◽  
Hongwen Ma ◽  
Zheng Luo ◽  
Xi Ma ◽  
Qian Guo

To make potassium from K-bearing rocks accessible to agriculture, processing on biotite syenite powder under mild alkaline hydrothermal conditions was carried out, in which two types of KAlSiO4 were obtained successfully. The dissolution-precipitation process of silicate rocks is a significant process in lithospheric evolution. Its effective utilization will be of importance for realizing the comprehensiveness of aluminosilicate minerals in nature. Two kinds of KAlSiO4 were precipitated in sequence during the dissolution process of biotite syenite. The crystal structures of two kinds of KAlSiO4 were compared by Rietveld structure refinements. The kinetics model derived from geochemical research was adopted to describe the dissolution behavior. The reaction order and apparent activation energy at the temperature range of 240–300 °C were 2.992 and 97.41 kJ/mol, respectively. The higher dissolution reaction rate of K-feldspar mainly relies on the alkaline solution, which gives rise to higher reaction order. During the dissolution-precipitation process of K-feldspar, two types of KAlSiO4 with different crystal structure were precipitated. This study provides novel green chemical routes for the comprehensive utilization of potassium-rich silicates.


2020 ◽  
Vol 125 (11) ◽  
Author(s):  
A. W. A. Ahoulou ◽  
A.‐J. Tinet ◽  
C. Oltéan ◽  
F. Golfier

Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 636
Author(s):  
Jinyan Lang ◽  
Junliang Lu ◽  
Ping Lan ◽  
Na Wang ◽  
Hongyan Yang ◽  
...  

In this paper, a two-phase system, formed by oxalic acid/choline chloride-based deep eutectic solvent (DES) and chosen extractants, was used as a dissolution–reaction–separation system, and metal chloride was used as a catalyst to study the degradation of cellulose to produce 5-hydroxymethylfurfural (5-HMF) and glucose. The effects of the amount of organic solvent and the reaction temperature on product yield, the repeated recycling of DES, the comparison between a two-phase system and a homogeneous system, and the mechanism of cellulose degradation to 5-HMF were investigated. The results show that ethyl n-butyrate has the best extraction effect on 5-HMF. Compared with the homogeneous system, the yield of 5-HMF and glucose in the two-phase system is significantly improved. At a temperature of 140 °C and a reaction time of 120 min, the yields of glucose and 5-HMF reached the maximum, which were 23.5% and 29.8%, respectively. After DES was reused three times, the yields of glucose and 5-HMF decreased greatly, indicating that the recycling rate of DES was low.


Sign in / Sign up

Export Citation Format

Share Document