final state
Recently Published Documents


TOTAL DOCUMENTS

3426
(FIVE YEARS 557)

H-INDEX

83
(FIVE YEARS 10)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yichen Jin ◽  
Mouhui Yan ◽  
Tomislav Kremer ◽  
Elena Voloshina ◽  
Yuriy Dedkov

AbstractA broad family of the nowadays studied low-dimensional systems, including 2D materials, demonstrate many fascinating properties, which however depend on the atomic composition as well as on the system dimensionality. Therefore, the studies of the electronic correlation effects in the new 2D materials is of paramount importance for the understanding of their transport, optical and catalytic properties. Here, by means of electron spectroscopy methods in combination with density functional theory calculations we investigate the electronic structure of a new layered van der Waals $$\hbox {FePX}_3$$ FePX 3 (X: S, Se) materials. Using systematic resonant photoelectron spectroscopy studies we observed strong resonant behavior for the peaks associated with the $$3d^{n-1}$$ 3 d n - 1 final state at low binding energies for these materials. Such observations clearly assign $$\hbox {FePX}_3$$ FePX 3 to the class of Mott–Hubbard type insulators for which the top of the valence band is formed by the hybrid Fe-S/Se electronic states. These observations are important for the deep understanding of this new class of materials and draw perspectives for their further applications in different application areas, like (opto)spintronics and catalysis.


2022 ◽  
Vol 105 (1) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

Author(s):  
Ki-Su Kim ◽  
Myung-Il Roh ◽  
Seung-Min Lee

When a ship is damaged at sea, it is important to predict its behavior as well as whether it is to sink or not. If the ship comes to an equilibrium, the equilibrium position and time should be estimated; otherwise, the time to sink should be estimated. Furthermore, flooding analysis should be carried out not only during the design stage of the ship for preventive reasons, but also after an accident for a better investigation of its causes. In addition, flooding analysis methods that can provide predictions in case of an accident are of particular importance, as there is no time for the required calculations in an emergency. For this purpose, a quasi-static flooding analysis method for the damaged ship in the time domain is proposed in this study. There are a number of studies in which the equilibrium position and time were estimated by flooding analysis. However, most of them have not considered the air pressure effect in fully flooded compartments, and the method of determining the fluid volume in these compartments was not accurate. In the present study, the virtual vent and accumulator method are used to calculate the reference pressure in the fully flooded compartments, and the compartment shape is considered by using polyhedral integration. Also, spilled oil and solid cargo items from the damaged ship are taken into account for realistic flooding analysis. Finally, the damage stability criteria were checked not only in the final state, but also during the entire time of the flooding, as the intermediate states can be more hazardous than the final state. To validate the feasibility of the proposed method, it was applied to a naval ship, which is considerably more stringent for damage stability. As a result, we checked the availability of this study.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Biswajit Sahoo ◽  
Ashoke Sen

Abstract Classical soft graviton theorem gives the gravitational wave-form at future null infinity at late retarded time u for a general classical scattering. The large u expansion has three known universal terms: the constant term, the term proportional to 1/u and the term proportional to ln u/u2, whose coefficients are determined solely in terms of the momenta of incoming and the outgoing hard particles, including the momenta carried by outgoing gravitational and electromagnetic radiation produced during scattering. For the constant term, also known as the memory effect, the dependence on the momenta carried away by the final state radiation / massless particles is known as non-linear memory or null memory. It was shown earlier that for the coefficient of the 1/u term the dependence on the momenta of the final state massless particles / radiation cancels and the result can be written solely in terms of the momenta of the incoming particles / radiation and the final state massive particles. In this note we show that the same result holds for the coefficient of the ln u/u2 term. Our result implies that for scattering of massless particles the coefficients of the 1/u and ln u/u2 terms are determined solely by the incoming momenta, even if the particles coalesce to form a black hole and massless radiation. We use our result to compute the low frequency flux of gravitational radiation from the collision of massless particles at large impact parameter.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Wen Han Chiu ◽  
Zhen Liu ◽  
Matthew Low ◽  
Lian-Tao Wang

Abstract The measurement of the arrival time of a particle, such as a lepton, a photon, or a pion, reaching the detector provides valuable information. A similar measurement for a hadronic final state, however, is much more challenging as one has to extract the relevant information from a collection of particles. In this paper, we explore various possibilities in defining the time of a jet through the measurable arrival times of the jet constituents. We find that a definition of jet time based on a transverse momentum weighted sum of the times of the constituents has the best performance. For prompt jets, the performance depends on the jet trajectory. For delayed jets, the performance depends on the trajectory of the jet, the trajectory of the mother particle, and the location of the displaced vertex. Compared to the next-best-performing jet time definition, the transverse momentum weighted sum has roughly a factor of ten times better jet time resolution. We give a detailed discussion of the relevant effects and characterize the full geometrical dependence of the performance. These results highlight the critical importance of using a proper definition of jet time with its corresponding detector-dependent calibration and the exciting possibility of deepening our understanding of jets in the time domain.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Gavin Bewick ◽  
Silvia Ferrario Ravasio ◽  
Peter Richardson ◽  
Michael H. Seymour

Abstract We study the simulation of initial-state radiation in angular-ordered parton showers in order to investigate how different interpretations of the ordering variable affect the logarithmic accuracy of such showers. This also enables us to implement a recoil scheme which is consistent between final-state and initial-state radiation. We present optimal values of the strong coupling and intrinsic transverse momentum to be used in each version of the parton shower, tuned using Z0-boson production at the LHC at 7 TeV. With these tuned showers, we perform a phenomenological study of the Drell-Yan process at several centre-of-mass energies.


2022 ◽  
Vol 137 (1) ◽  
Author(s):  
Mogens Dam

AbstractFor cross section measurements, an accurate knowledge of the integrated luminosity is required. The FCC-ee physics programme at and around the Z pole sets the ambitious precision goal of $$10^{-4}$$ 10 - 4 on the absolute luminosity measurement and one order of magnitude better on the relative measurement between energy scan points. The luminosity is determined from the rate of Bhabha scattering, $$\mathrm {e^+e^- \rightarrow e^+e^-}$$ e + e - → e + e - , where the final state electrons and positrons are detected in dedicated monitors covering small angles from the outgoing beam directions. The constraints on the luminosity monitors are multiple: (i) they are placed inside the main detector volume only about 1 m from the interaction point; (ii) they are centred around the outgoing beam directions and do not satisfy the normal axial detector symmetry; (iii) their coverage is limited by the beam pipe, on the one hand, and by the requirement to stay clear of the main detector acceptance, on the other; (iv) the steep angular dependence of the Bhabha scattering process imposes a precision on the acceptance limits at about 1 $$\upmu $$ μ rad, corresponding to an absolute geometrical precision of $${\mathcal {O}}(1\,\upmu \text {m})$$ O ( 1 μ m ) on the monitor radial dimensions; and v) the very high bunch-crossing rate of 50 MHz during the Z-pole operation calls for fast readout electronics. Inspired by second-generation LEP luminosity monitors, which achieved an experimental precision of $$3.4 \times 10^{-4}$$ 3.4 × 10 - 4 on the absolute luminosity measurement (Abbiendi et al. in Eur Phys J C 14:373–425, 2000), a proposed ultra-compact solution is based on a sandwich of tungsten-silicon layers. A vigorous R&D programme is needed in order to ensure that such a solution satisfies the more challenging FCC-ee requirements.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Junegone Chay ◽  
Taewook Ha ◽  
Taehyun Kwon

Abstract We study N-jettiness in electroweak processes at extreme high energies, in which the mass of the weak gauge bosons can be regarded as small. The description of the scattering process such as e−e+ → μ−μ+ + X is similar to QCD. The incoming leptons emit initial-state radiation and the resultant particles, highly off-shell, participate in the hard scattering, which are expressed by the beam functions. After the hard scattering, the final- state leptons or leptonic jets are observed, described by the fragmenting jet functions or the jet functions respectively. At present, electroweak processes are prevailed by the processes induced by the strong interaction, but they will be relevant at future e−e+ colliders at high energy. The main difference between QCD and electroweak processes is that the initial- and final-state particles should appear in the form of hadrons, that is, color singlets in QCD, while there can be weak nonsinglets as well in electroweak interactions. We analyze the factorization theorems for the N-jettiness in e−e+ → μ−μ+ + X, and compute the factorized parts to next-to-leading logarithmic accuracy. To simplify the comparison with QCD, we only consider the SU(2)W gauge interaction, and the extension to the Standard Model is straightforward. Put it in a different way, it corresponds to an imaginary world in which colored particles can be observed in QCD, and the richer structure of effective theories is probed. Various nonzero nonsinglet matrix elements are interwoven to produce the factorized results, in contrast to QCD in which there are only contributions from the singlets. Another distinct feature is that the rapidity divergence is prevalent in the contributions from weak nonsinglets due to the different group theory factors between the real and virtual corrections. We verify that the rapidity divergence cancels in all the contributions with a different number of nonsinglet channels. We also consider the renormalization group evolution of each factorized part to resum large logarithms, which are distinct from QCD.


2021 ◽  
Vol 933 ◽  
Author(s):  
R.J. Munro ◽  
M.R. Foster

Fluid entering the periphery of a steadily rotating cylindrical tank exits through an off-axis drain hole, located in the tank's base at the half-radius. Experiments show that, though a concentrated vortex forms over the drain, it soon advects around the tank in what is at first a circular path. Though inviscid vortex dynamics predicts continued motion, our experiments show that the vortex moves inwards from the predicted circular path, finally coming to rest at approximately $50^{\circ }$ from the drain. In this final state, the vorticity is concentrated in a thin shear layer bounding an irrotational core, which passes over the drain. The broadening of the vortex structure and eventual steady-state formation are believed to be due to the growing boundary layer on the outer wall.


Sign in / Sign up

Export Citation Format

Share Document