A Limit Theorem for Quantum Markov Chains Associated to Beam Splittings

2001 ◽  
Vol 08 (03) ◽  
pp. 261-290
Author(s):  
Volkmar Liebscher

We study special quantum Markov chains on a Fock space related to iterated beam splittings as introduced in [23]. Besides a characterization of the position distributions of the chain, we show some kind of weak convergence of such discrete time quantum Markov chains to a kind of continuous time quantum Markov process. Furthermore, we provide existence and uniqueness for the solution of a quantum stochastic differential equation related to this quantum Markov process both on an exponential domain and, on a larger domain, in a pointwise sense.

1991 ◽  
Vol 109 (3) ◽  
pp. 571-595 ◽  
Author(s):  
Peter Glockner

Many examples of quantum independent stationary increment processes are solutions of quantum stochastic differential equations. We give a common characterization of these examples by a quantum stochastic differential equation on an abstract *-bialgebra. Specializing this abstract *-bialgebra and the coefficients of the equation, we obtain the equations for the Unitary Noncommutative Stochastic processes of [12], the Quantum Wiener Process [2], the Azéma martingales [11] and for other examples. The existence and uniqueness of a solution of the general equation is shown. Assuming the boundedness of this solution, we prove that it is a continuous and stationary independent increment process.


2020 ◽  
Vol 52 (4) ◽  
pp. 1249-1283
Author(s):  
Masatoshi Kimura ◽  
Tetsuya Takine

AbstractThis paper considers ergodic, continuous-time Markov chains $\{X(t)\}_{t \in (\!-\infty,\infty)}$ on $\mathbb{Z}^+=\{0,1,\ldots\}$ . For an arbitrarily fixed $N \in \mathbb{Z}^+$ , we study the conditional stationary distribution $\boldsymbol{\pi}(N)$ given the Markov chain being in $\{0,1,\ldots,N\}$ . We first characterize $\boldsymbol{\pi}(N)$ via systems of linear inequalities and identify simplices that contain $\boldsymbol{\pi}(N)$ , by examining the $(N+1) \times (N+1)$ northwest corner block of the infinitesimal generator $\textbf{\textit{Q}}$ and the subset of the first $N+1$ states whose members are directly reachable from at least one state in $\{N+1,N+2,\ldots\}$ . These results are closely related to the augmented truncation approximation (ATA), and we provide some practical implications for the ATA. Next we consider an extension of the above results, using the $(K+1) \times (K+1)$ ( $K > N$ ) northwest corner block of $\textbf{\textit{Q}}$ and the subset of the first $K+1$ states whose members are directly reachable from at least one state in $\{K+1,K+2,\ldots\}$ . Furthermore, we introduce new state transition structures called (K, N)-skip-free sets, using which we obtain the minimum convex polytope that contains $\boldsymbol{\pi}(N)$ .


1982 ◽  
Vol 19 (3) ◽  
pp. 692-694 ◽  
Author(s):  
Mark Scott ◽  
Barry C. Arnold ◽  
Dean L. Isaacson

Characterizations of strong ergodicity for Markov chains using mean visit times have been found by several authors (Huang and Isaacson (1977), Isaacson and Arnold (1978)). In this paper a characterization of uniform strong ergodicity for a continuous-time non-homogeneous Markov chain is given. This extends the characterization, using mean visit times, that was given by Isaacson and Arnold.


1989 ◽  
Vol 26 (3) ◽  
pp. 643-648 ◽  
Author(s):  
A. I. Zeifman

We consider a non-homogeneous continuous-time Markov chain X(t) with countable state space. Definitions of uniform and strong quasi-ergodicity are introduced. The forward Kolmogorov system for X(t) is considered as a differential equation in the space of sequences l1. Sufficient conditions for uniform quasi-ergodicity are deduced from this equation. We consider conditions of uniform and strong ergodicity in the case of proportional intensities.


Author(s):  
Alexander M. Chebotarev

We show a new remarkable connection between the symmetric form of a quantum stochastic differential equation (QSDE) and the strong resolvent limit of the Schrödinger equations in Fock space: the strong resolvent limit is unitarily equivalent to QSDE in the adapted (or Ito) form, and the weak limit is unitarily equivalent to the symmetric (or Stratonovich) form of QSDE. We also prove that QSDE is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation in Fock space. The boundary condition describes standard jumps in phase and amplitude of components of Fock vectors belonging to the range of the resolvent. The corresponding Markov evolution equation (the Lindblad or Markov master equation) is derived from the boundary value problem for the Schrödinger equation.


2003 ◽  
Vol 40 (02) ◽  
pp. 327-345 ◽  
Author(s):  
Xianping Guo ◽  
Onésimo Hernández-Lerma

This paper is a first study of two-person zero-sum games for denumerable continuous-time Markov chains determined by given transition rates, with an average payoff criterion. The transition rates are allowed to be unbounded, and the payoff rates may have neither upper nor lower bounds. In the spirit of the ‘drift and monotonicity’ conditions for continuous-time Markov processes, we give conditions on the controlled system's primitive data under which the existence of the value of the game and a pair of strong optimal stationary strategies is ensured by using the Shapley equations. Also, we present a ‘martingale characterization’ of a pair of strong optimal stationary strategies. Our results are illustrated with a birth-and-death game.


2002 ◽  
Vol 14 (03) ◽  
pp. 241-272 ◽  
Author(s):  
DONG MYUNG CHUNG ◽  
UN CIG JI ◽  
NOBUAKI OBATA

White noise theory allows to formulate quantum white noises explicitly as elemental quantum stochastic processes. A traditional quantum stochastic differential equation of Itô type is brought into a normal-ordered white noise differential equation driven by lower powers of quantum white noises. The class of normal-ordered white noise differential equations covers quantum stochastic differential equations with highly singular noises such as higher powers or higher order derivatives of quantum white noises, which are far beyond the traditional Itô theory. For a general normal-ordered white noise differential equation unique existence of a solution is proved in the sense of white noise distribution. Its regularity properties are investigated by means of weighted Fock spaces interpolating spaces of white noise distributions and associated characterization theorems for S-transform and for operator symbols.


1968 ◽  
Vol 33 ◽  
pp. 7-19 ◽  
Author(s):  
V. Mandrekar

The idea of multivariate wide-sense Markov processes has been recently used by F.J. Beutler [1], In his paper, he shows that the solution of a linear vector stochastic differential equation in a wide-sense Markov process. We obtain here a characterization of such processes and as its consequence obtain the conditions under which it satisfies Beutler’s equation. Furthermore, in stationary Gaussian case we show that these are precisely stationary Gaussian Markov processes studied by J. Doob [5].


1982 ◽  
Vol 19 (03) ◽  
pp. 692-694 ◽  
Author(s):  
Mark Scott ◽  
Barry C. Arnold ◽  
Dean L. Isaacson

Characterizations of strong ergodicity for Markov chains using mean visit times have been found by several authors (Huang and Isaacson (1977), Isaacson and Arnold (1978)). In this paper a characterization of uniform strong ergodicity for a continuous-time non-homogeneous Markov chain is given. This extends the characterization, using mean visit times, that was given by Isaacson and Arnold.


Sign in / Sign up

Export Citation Format

Share Document