Purification and characterization of a low molecular weight endoxylanase from solid-state cultures of alkali-tolerant Aspergillus fischeri

2004 ◽  
Vol 26 (16) ◽  
pp. 1283-1287 ◽  
Author(s):  
Sundar Rajan Senthilkumar ◽  
Balasubramaniem Ashokkumar ◽  
Krishnan Chandra Raj ◽  
Paramasamy Gunasekaran
1999 ◽  
Vol 30 (2) ◽  
pp. 114-119 ◽  
Author(s):  
Claudio Henrique Cerri e Silva ◽  
Jurgen Puls ◽  
Marcelo Valle de Sousa ◽  
Edivaldo Ximenes Ferreira Filho

A xylan-degrading enzyme (xylanase II) was purified to apparent homogeneity from solid-state cultures of Aspergillus fumigatus Fresenius. The molecular weight of xylanase II was found to be 19 and 8.5 kDa, as estimated by SDS-PAGE and gel filtration on FPLC, respectively. The purified enzyme was most active at 55 °C and pH 5.5. It was specific to xylan. The apparent Km and Vmax values on soluble and insoluble xylans from oat spelt and birchwood showed that xylanase II was most active on soluble birchwood xylan. Studies on hydrolysis products of various xylans and xylooligomers by xylanase II on HPLC showed that the enzyme released a range of products from xylobiose to xylohexaose, with a small amount of xylose from xylooligomers, and presented transferase activity.


1979 ◽  
Vol 178 (2) ◽  
pp. 279-287 ◽  
Author(s):  
D K Podolsky ◽  
M M Weiser

A low-molecular-weight acceptor of galactosyltransferase activity was detected in sera and effusions of patients with extensive maligant disease. This substance was purified to homogeneity from both human serum and effusion by using sequential charcoal/Celite and DEAE-cellulose column chromatography. The purified acceptor was shown to act as substrate for both purified normal and cancer-associated human galactosyltransferase (EC 2.4.1.22) isoenzymes, but had a higher affinity for the cancer-associated isoenzyme (Km = 20 microM) than for the normal isoenzyme (Km = 500 microM). The substrate was found to be a glycopeptide with mol.wt. approx. 3600 determined by polyacrylamide-gel chromatography. Carbohyydate analysis demonstrated only the presence of glucosamine and mannose. Amino acid analysis revealed that the peptide moiety consisted of eight different amino acids, including two residues of asparagine and one residue of serine, but no threonine. These structural data suggest that the acceptor is a fraction of an asparagine-glucosamine type of glycoprotein.


Sign in / Sign up

Export Citation Format

Share Document