human cancer
Recently Published Documents





2024 ◽  
Vol 84 ◽  
M. Ahmad ◽  
Y. Hameed ◽  
M. Khan ◽  
M Usman ◽  
A. Rehman ◽  

Abstract Cancer is a fatal malignancy and its increasing worldwide prevalence demands the discovery of more sensitive and reliable molecular biomarkers. To investigate the GINS1 expression level and its prognostic value in distinct human cancers using a series of multi-layered in silico approach may help to establish it as a potential shared diagnostic and prognostic biomarker of different cancer subtypes. The GINS1 mRNA, protein expression, and promoter methylation were analyzed using UALCAN and Human Protein Atlas (HPA), while mRNA expression was further validated via GENT2. The potential prognostic values of GINS1 were evaluated through KM plotter. Then, cBioPortal was utilized to examine the GINS1-related genetic mutations and copy number variations (CNVs), while pathway enrichment analysis was performed using DAVID. Moreover, a correlational analysis between GINS1 expression and CD8+ T immune cells and a the construction of gene-drug interaction network was performed using TIMER, CDT, and Cytoscape. The GINS1 was found down-regulated in a single subtypes of human cancer while commonly up-regulated in 23 different other subtypes. The up-regulation of GINS1 was significantly correlated with the poor overall survival (OS) of Liver Hepatocellular Carcinoma (LIHC), Lung Adenocarcinoma (LUAD), and Kidney renal clear cell carcinoma (KIRC). The GINS1 was also found up-regulated in LIHC, LUAD, and KIRC patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of GINS1 in two diverse pathways, while few interesting correlations were also documented between GINS1 expression and its promoter methylation level, CD8+ T immune cells level, and CNVs. Moreover, we also predicted few drugs that could be used in the treatment of LIHC, LUAD, and KIRC by regulating the GINS1 expression. The expression profiling of GINS1 in the current study has suggested it a novel shared diagnostic and prognostic biomarker of LIHC, LUAD, and KIRC.

2022 ◽  
Vol 74 ◽  
pp. 25-31
Steven P Wolf ◽  
Frank T Wen ◽  
Hans Schreiber

PLoS Genetics ◽  
2022 ◽  
Vol 18 (1) ◽  
pp. e1009996
Alexey D. Vyatkin ◽  
Danila V. Otnyukov ◽  
Sergey V. Leonov ◽  
Aleksey V. Belikov

There is a growing need to develop novel therapeutics for targeted treatment of cancer. The prerequisite to success is the knowledge about which types of molecular alterations are predominantly driving tumorigenesis. To shed light onto this subject, we have utilized the largest database of human cancer mutations–TCGA PanCanAtlas, multiple established algorithms for cancer driver prediction (2020plus, CHASMplus, CompositeDriver, dNdScv, DriverNet, HotMAPS, OncodriveCLUSTL, OncodriveFML) and developed four novel computational pipelines: SNADRIF (Single Nucleotide Alteration DRIver Finder), GECNAV (Gene Expression-based Copy Number Alteration Validator), ANDRIF (ANeuploidy DRIver Finder) and PALDRIC (PAtient-Level DRIver Classifier). A unified workflow integrating all these pipelines, algorithms and datasets at cohort and patient levels was created. We have found that there are on average 12 driver events per tumour, of which 0.6 are single nucleotide alterations (SNAs) in oncogenes, 1.5 are amplifications of oncogenes, 1.2 are SNAs in tumour suppressors, 2.1 are deletions of tumour suppressors, 1.5 are driver chromosome losses, 1 is a driver chromosome gain, 2 are driver chromosome arm losses, and 1.5 are driver chromosome arm gains. The average number of driver events per tumour increases with age (from 7 to 15) and cancer stage (from 10 to 15) and varies strongly between cancer types (from 1 to 24). Patients with 1 and 7 driver events per tumour are the most frequent, and there are very few patients with more than 40 events. In tumours having only one driver event, this event is most often an SNA in an oncogene. However, with increasing number of driver events per tumour, the contribution of SNAs decreases, whereas the contribution of copy-number alterations and aneuploidy events increases.

2022 ◽  
pp. 1-16
Rui Fu ◽  
Xinxia Luo ◽  
Yan Ding ◽  
Shiwen Guo

<b><i>Objective:</i></b> Methyltransferase-like 7B (METTL7B) is a member of methyltransferase-like family. Little is known about the exact role of METTL7B in cancer. This study aims to investigate the role of METTL7B in gliomas. <b><i>Methods:</i></b> The expression of METTL7B in glioma and adjacent normal tissues were examined by using TCGA, Chinese Glioma Genome Atlas (CGGA) database, and clinical tissues. <b><i>Results:</i></b> The results showed that METTL7B was highly expressed in glioma. Patients with high levels of METTL7B usually had poor survival in glioma, especially in low-grade glioma (LGG). Data from CGGA showed that METTL7B was an independent risk factor of glioma and can be used to evaluate the survival time of glioma patients. Hypomethylation in the METTL7B CpG islands was lower in LGG, and all the hypomethylated METTL7B islands were correlated with poor LGG survival. Furthermore, METTL7B levels were correlated with high numbers of tumor infiltrated immune cells in glioma, especially in LGG. ). Gene Set Enrichment Analysis found METTL7B was correlated with leukocyte proliferation, T-cell proliferation, peptidase activity, lymphocyte activation, etc. TCGA and CGGA database analysis showed that there were 1,546 and 1,117 genes that had a synergistic effect with METTL7B in glioma, respectively, and there were 372 genes overlapped between the 2 groups, including PD-L1. Data from clinical tissues also showed PD-L1 was highly expressed in glioma tissues and was positively correlated with METTL7B. <b><i>Conclusion:</i></b> Our study suggested that METTL7B was a potential prognostic biomarker for glioma and other cancers, and it may act as an oncogenic driver and may be a potential therapeutic target in human cancer, especially in LGG.

Life ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 109
Katalin Kelemen

Nucleophosmin (NPM1) is a multifunctional protein with both proliferative and growth-suppressive roles in the cell. In humans, NPM1 is involved in tumorigenesis via chromosomal translocations, deletions, or mutation. Acute myeloid leukemia (AML) with mutated NPM1, a distinct diagnostic entity by the current WHO Classification of myeloid neoplasm, represents the most common diagnostic subtype in AML and is associated with a favorable prognosis. The persistence of NPM1 mutation in AML at relapse makes this mutation an ideal target for minimal measurable disease (MRD) detection. The clinical implication of this is far-reaching because NPM1-mutated AML is currently classified as being of standard risk, with the best treatment strategy (transplantation versus chemotherapy) yet undefined. Myeloid neoplasms with NPM1 mutations and <20% blasts are characterized by an aggressive clinical course and a rapid progression to AML. The pathological classification of these cases remains controversial. Future studies will determine whether NPM1 gene mutation may be sufficient for diagnosing NPM1-mutated AML independent of the blast count. This review aims to summarize the role of NPM1 in normal cells and in human cancer and discusses its current role in clinical management of AML and related myeloid neoplasms.

2022 ◽  
Vol 15 (1) ◽  
pp. 92
Lilianna Becan ◽  
Anna Pyra ◽  
Nina Rembiałkowska ◽  
Iwona Bryndal

Thiazolo[4,5-d]pyrimidine derivatives are considered potential therapeutic agents, particularly in the development of anticancer drugs. In this study, new 7-oxo-(2a-e), 7-chloro-(3a-e) and also three 7-amino-(4a-c) 5-trifluoromethyl-2-thioxo-thiazolo[4,5-d]pyrimidine derivatives have been synthesized and evaluated for their potential anticancer activity. These derivatives were characterized by spectroscopic methods and elemental analysis, and the single-crystal X-ray diffraction was further performed to confirm a 3D structure for compounds 2e and 4b. The antiproliferative activity evaluation of twelve new compounds was carried out on a variety of cell lines including four human cancer (A375, C32, DU145, MCF-7/WT) and two normal cell lines (CHO-K1 and HaCaT). Four of them (2b, 3b, 4b and 4c) were selected by the National Cancer Institute and evaluated for their in vitro anticancer activity using the NCI-60 screening program. 7-Chloro-3-phenyl-5-(trifluoromethyl)[1,3]thiazolo[4,5-d]pyrimidine-2(3H)-thione (3b) proved to be the most active among the newly synthesized compounds.

2022 ◽  
Vol 20 (2) ◽  
pp. 345-350
Wesam M. Salama ◽  
Sabry A. El-Naggar

Purpose: In this study, the cytotoxicity of scorpion Leurius quinquestratus crude venom (LQCV) was evaluated in vitro in selected human cancer cell lines. Methods: Breast (MCF-7), hepatocellular (HepG-2), colon (CaCo-2), cervix (HeLa) and alveolar (A-549) adenocarcinoma cell lines were tested. MTT assay and median inhibition concentration (IC50), apoptotic assay, caspase 3, P53, Bcl-2 proteins and cell cycle were determined. Results: 24 hrs post-treatment, CaCo-2 represented the most sensitive cell line (IC50 of 4.12 μg/mL). Due to the exposure to 1/10 IC50 of LQCV, the percentage of the apoptotic cells, caspase 3, and P53 proteins were increased significantly (P<0.05) while Bcl-2 was decreased in comparison to untreated cells. Treatment with LQCV induced cell cycle arrest at G1 and G2/M phases. Conclusion: LQCV displays potent cytotoxicity against selected human cell lines in vitro. Thus, the material could become a potent agent for the management of some cancers.

Onco ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 34-35
Chiaki Takahashi ◽  
Jun-ya Kato

The accelerated cell cycle progression is one of the hallmarks of human cancer [...]

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 254
Denisse A. Gutierrez ◽  
Lisett Contreras ◽  
Paulina J. Villanueva ◽  
Edgar A. Borrego ◽  
Karla Morán-Santibañez ◽  

In this study, we identified a novel pyrazole-based derivative (P3C) that displayed potent cytotoxicity against 27 human cancer cell lines derived from different tissue origins with 50% cytotoxic concentrations (CC50) in the low micromolar and nanomolar range, particularly in two triple-negative breast cancer (TNBC) cell lines (from 0.25 to 0.49 µM). In vitro assays revealed that P3C induces reactive oxygen species (ROS) accumulation leading to mitochondrial depolarization and caspase-3/7 and -8 activation, suggesting the participation of both the intrinsic and extrinsic apoptotic pathways. P3C caused microtubule disruption, phosphatidylserine externalization, PARP cleavage, DNA fragmentation, and cell cycle arrest on TNBC cells. In addition, P3C triggered dephosphorylation of CREB, p38, ERK, STAT3, and Fyn, and hyperphosphorylation of JNK and NF-kB in TNBC cells, indicating the inactivation of both p38MAPK/STAT3 and ERK1/2/CREB signaling pathways. In support of our in vitro assays, transcriptome analyses of two distinct TNBC cell lines (MDA-MB-231 and MDA-MB-468 cells) treated with P3C revealed 28 genes similarly affected by the treatment implicated in apoptosis, oxidative stress, protein kinase modulation, and microtubule stability.

2022 ◽  
Vol 23 (2) ◽  
pp. 797
Tatiana Michel ◽  
Markus Ollert ◽  
Jacques Zimmer

Despite significant progress in recent years, the therapeutic approach of the multiple different forms of human cancer often remains a challenge. Besides the well-established cancer surgery, radiotherapy and chemotherapy, immunotherapeutic strategies gain more and more attention, and some of them have already been successfully introduced into the clinic. Among these, immunotherapy based on natural killer (NK) cells is considered as one of the most promising options. In the present review, we will expose the different possibilities NK cells offer in this context, compare data about the theoretical background and mechanism(s) of action, report some results of clinical trials and identify several very recent trends. The pharmaceutical industry is quite interested in NK cell immunotherapy, which will benefit the speed of progress in the field.

Sign in / Sign up

Export Citation Format

Share Document