scholarly journals Efficacy of near-infrared spectroscopy cerebral oximetry on detection of critical cerebral perfusion during carotid endarterectomy under regional anesthesia

VASA ◽  
2020 ◽  
Vol 49 (5) ◽  
pp. 367-374
Author(s):  
João P. Rocha-Neves ◽  
Juliana Pereira-Macedo ◽  
André L. Moreira ◽  
José P. Oliveira-Pinto ◽  
Graça Afonso ◽  
...  

Summary: Background: Patients undergoing carotid endarterectomy (CEA) may suffer from cerebral hypoperfusion during the carotid cross-clamping. Near-infrared spectroscopy cerebral oximetry (NIRS) is a non-invasive method of regional cerebral oxygen saturation measurement reflecting changes in cerebral blood flow during CEA. The main goal of the study was to evaluate the accuracy of the NIRS in detecting cerebral hypoperfusion during CEA under regional anesthesia (RA) and compare it with awake neurological testing. Patients and methods: A prospective observational study of 28 patients that underwent CEA in RA and manifested neurologic deficits, and 28 consecutive controls from a tertiary and referral center, was performed. All patients were monitored with NIRS cerebral oximetry and awake testing as the control technique. Subsequently, operating characteristic curve and Cohen’s kappa coefficient were determined to evaluate the reliability of the monitoring test. Results: NIRS presented a sensitivity of 27.3% and a specificity of 89.3% in comparison to awake testing. Receiver operating characteristic (ROC) curve analysis demonstrated that a decrease of at least 20% in cerebral oxygen saturation is the best threshold to infer cerebral hypoperfusion. However, the respective area under the curve (AUROC) was 0.606 (95% CI: 0.456–0.756, P = 0.178) with a calculated Cohen’s kappa of 0.179, P = 0.093. Regarding 30-days outcomes, only awake testing has shown significant associations with stroke and postoperative complications ( P = 0.043 and P = 0.05), which were higher in patients with post-clamping neurologic deficits. Conclusions: NIRS demonstrated a reduced discriminative capacity for critical cerebral hypoperfusion, and does not seem to add substantial clinical benefits to the awake test.

Medicina ◽  
2019 ◽  
Vol 55 (5) ◽  
pp. 179 ◽  
Author(s):  
Sniedze Murniece ◽  
Martin Soehle ◽  
Indulis Vanags ◽  
Biruta Mamaja

Background and Objectives: Postoperative cognitive disturbances (POCD) can significantly alter postoperative recovery. Inadequate intraoperative cerebral oxygen supply is one of the inciting causes of POCD. Near-infrared spectroscopy (NIRS) devices monitor cerebral oxygen saturation continuously and can help to guide intraoperative patient management. The aim of the study was to evaluate the applicability of the NIRS-based clinical algorithm during spinal neurosurgery and to find out whether it can influence postoperative cognitive performance. Materials and Methods: Thirty four patients scheduled for spinal neurosurgery were randomized into a study group (n = 23) and a control group (n = 11). We monitored regional cerebral oxygen saturation (rScO2) throughout surgery, using a NIRS device (INVOS 4100). If rScO2 dropped bilaterally or unilaterally by more than 20% from baseline values, or under an absolute value of 50%, the NIRS-based algorithm was initiated in the study group. In the control group, rScO2 was monitored blindly. To evaluate cognitive function, Montreal-Cognitive Assessment (MoCA) scale was used in both groups before and after the surgery. Results: In the study group, rScO2 dropped below the threshold in three patients and the NIRS-based algorithm was activated. Firstly, we verified correct positioning of the head; secondly, we increased mean systemic arterial pressure in the three patients by injecting repeated intravenous bolus doses of Ephedrine, ultimately resulting in an rScO2 increase above the approved threshold level. None of the three patients showed POCD. In the control group, one patient showed a drop in rScO2 of 34% from baseline and presented with a POCD. RScO2 drop occurred with other stable intraoperative measurements. Conclusions: A significant rScO2 drop may occur during spinal surgery in prone position despite other intraoperative measurements remaining stable, allowing it to stay otherwise unrecognized. Use of the NIRS-based clinical algorithm can help to avoid POCD in patients after spinal surgery.


1998 ◽  
Vol 89 (Supplement) ◽  
pp. 458A
Author(s):  
H Marc Watzman ◽  
C Dean Kurth ◽  
Jonathan Rome ◽  
Susan C Nicolson ◽  
James M Steven ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document