scholarly journals The California Current system in the Southern California Bight and the Santa Barbara Channel

1999 ◽  
Vol 104 (C4) ◽  
pp. 7695-7714 ◽  
Author(s):  
N. A. Bray ◽  
A. Keyes ◽  
W. M. L. Morawitz
2005 ◽  
Vol 35 (8) ◽  
pp. 1421-1436 ◽  
Author(s):  
Niklas Schneider ◽  
Emanuele Di Lorenzo ◽  
Pearn P. Niiler

Abstract Hydrographic observations southwestward of the Southern California Bight in the period 1937–99 show that temperature and salinity variations have very different interannual variability. Temperature varies within and above the thermocline and is correlated with climate indices of El Niño, the Pacific decadal oscillation, and local upwelling. Salinity variability is largest in the surface layers of the offshore salinity minimum and is characterized by decadal-time-scale changes. The salinity anomalies are independent of temperature, of heave of the pycnocline, and of the climate indices. Calculations demonstrate that long-shore anomalous geostrophic advection of the mean salinity gradient accumulates along the mean southward trajectory along the California Current and produces the observed salinity variations. The flow anomalies for this advective process are independent of large-scale climate indices. It is hypothesized that low-frequency variability of the California Current system results from unresolved, small-scale atmospheric forcing or from the ocean mesoscale upstream of the Southern California Bight.


2018 ◽  
Vol 68 (7) ◽  
pp. 761-777 ◽  
Author(s):  
Fanny Chenillat ◽  
Peter J. S. Franks ◽  
Xavier Capet ◽  
Pascal Rivière ◽  
Nicolas Grima ◽  
...  

2019 ◽  
Vol 124 (10) ◽  
pp. 6886-6903 ◽  
Author(s):  
Laura E. Lilly ◽  
Uwe Send ◽  
Matthias Lankhorst ◽  
Todd R. Martz ◽  
Richard A. Feely ◽  
...  

2020 ◽  
Vol 50 (5) ◽  
pp. 1435-1453 ◽  
Author(s):  
Katherine D. Zaba ◽  
Daniel L. Rudnick ◽  
Bruce D. Cornuelle ◽  
Ganesh Gopalakrishnan ◽  
Matthew R. Mazloff

AbstractThe data-assimilating California State Estimate (CASE) enables the explicit evaluation of spatiotemporally varying volume and heat budgets in the coastal California Current System (CCS). An analysis of over 10 years of CASE model output (2007–17) diagnoses the physical drivers of the CCS mean state, annual cycles, and the 2014–16 temperature anomalies associated with a marine heat wave and an El Niño event. The largest terms in the mean mixed layer (from−50 to 0 m) volume budgets are upward vertical transport at the coast and offshore-flowing ageostrophic Ekman transport at the surface, the two branches of the coastal upwelling overturning cell. Contributions from onshore geostrophic flow in the Southern California Bight and alongshore geostrophic convergence in the central CCS balance the mean volume budgets. The depth-dependent annual cycle of vertical velocity exhibits the strongest upward velocity between −40- and −30-m depth in April. Interannual volume budgets show that over 50% of the 2013.5–16.5 time period experienced downwelling anomalies, which were balanced predominantly by alongshore transport convergence and, less often, by onshore transport anomalies. Mixed layer temperature anomalies persisted for the entirety of 2014–16, reaching a maximum of +3° in October 2015. The mixed layer heat budget shows that intermittent high air–sea heat flux anomalies and alongshore and vertical heat advection anomalies all contributed to warming during 2014–16. A subsurface (from −210 to −100 m) heat budget reveals that in September 2015 anomalous poleward heat advection into the Southern California Bight by the California Undercurrent caused deeper warming during the 2015/16 El Niño.


Sign in / Sign up

Export Citation Format

Share Document