santa barbara channel
Recently Published Documents


TOTAL DOCUMENTS

280
(FIVE YEARS 22)

H-INDEX

37
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa M. ZoBell ◽  
Kaitlin E. Frasier ◽  
Jessica A. Morten ◽  
Sean P. Hastings ◽  
Lindsey E. Peavey Reeves ◽  
...  

AbstractCommercial shipping is the dominant source of low-frequency noise in the ocean. It has been shown that the noise radiated by an individual vessel depends upon the vessel’s speed. This study quantified the reduction in source levels (SLs) and sound exposure levels (SELs) for ships participating in two variations of a vessel speed reduction (VSR) program. SLs and SELs of individual ships participating in the program between 2014 and 2017 were statistically lower than non-participating ships (p < 0.001). In the 2018 fleet-based program, there were statistical differences between the SLs and SELs of fleets that participated with varying degrees of cooperation. Significant reductions in SL and SEL relied on cooperation of 25% or more in slowing vessel speed. This analysis highlights how slowing vessel speed to 10 knots or less is an effective method in reducing underwater noise emitted from commercial ships.


2021 ◽  
Vol 8 ◽  
Author(s):  
R. Cotton Rockwood ◽  
Jeffrey D. Adams ◽  
Sean Hastings ◽  
Jessica Morten ◽  
Jaime Jahncke

Vessel strikes have been documented around the world and frequently figure as a top human cause of large whale mortality. The shipping lanes in the Santa Barbara Channel, California and nearby waters have some of the highest predicted whale mortality from vessel strikes in the United States waters of the eastern Pacific. Beginning in 2007, National Oceanographic and Atmospheric Administration requested voluntary vessel speed reductions (VSRs) for vessels greater than 300 GT traveling in the Santa Barbara Channel shipping routes to decrease whale mortality from ship strikes. We employed a ship strike model using whale density data and automatic identification system (AIS) vessel data to estimate mortality under several management scenarios. To assess the effect of the VSR on strike mortality, we bootstrapped speeds from vessels greater than 19 m long that transited when no VSR was in place. Finally, we calculated the predicted mortality for hypothetical cooperation scenarios by artificially adding speed caps post-hoc to real vessel transits. For 2012–2018, we estimated that in our study area on average during summer/fall (June–November) 8.9 blue, 4.6 humpback, and 9.7 fin whales were killed from ship strikes each year (13–26% greater than previously estimated). We evaluated winter/spring (January–April) humpback mortality for the first time, resulting in an estimate of 5.7 deaths on average per year. Poor cooperation with the VSR led to low (5% maximum) to no reductions in the estimated number of strike mortalities. Evaluating potential scenarios showed that if 95% cooperation occurred in the lanes, whale deaths there would decrease by 22–26%. Adding VSRs with similar cooperation levels at the northern end of the Santa Barbara Channel and south of Channel Islands National Marine Sanctuary could decrease estimated strike mortalities in those areas by 30%. If VSRs were added and cooperation reached 95% there and in the lanes, we estimate a 21–29% decrease in vessel strike mortalities could be attained relative to estimated mortality in the entire study area. To decrease the vessel strike related whale mortalities in this region, we recommend expanding the VSR areas and increasing cooperation voluntarily, or considering mandatory speed limits if desired cooperation levels cannot otherwise be met.


Author(s):  
Christopher J. Pfützner ◽  
Steven G. Tuttle ◽  
Thomas N. Loegel ◽  
Iwona Leska ◽  
Brian T. Fisher

ABSTRACT This paper investigates the ignitability and effectiveness of burning crude oil spills at sea with respect to the type of oil, weathering time, and seawater emulsion content. In the event of an oil or fuel spill at sea, in situ burning can be a practical method of removing the oil and preventing it from reaching vulnerable coastlines. However, the specific chemistry of the oil and its resulting behavior dictates how well this method works. In order to understand this behavior, Santa Barbara Channel crude oils were tested and burned in combinations of fresh, weathered, and seawater-emulsified at discrete ratios. A cone calorimeter was used to monitor time to ignition, mass loss, heat release rate, and smoke production for laboratory-scale burn tests. Weathering generally increased ignition time, but also changed the miscibility with water; this changed both heat released and burn efficiency. Emulsions with seawater fractions below approximately 20 % were found to improve the heat release rate and burn efficiency compared to oil-only burns; suggesting that some water emulsification can benefit oil burning. The results indicate that a targeted approach to the type of oil and degree of emulsification can expand the window of opportunity for in situ oil burns.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dana N. Morton ◽  
Cristiana Y. Antonino ◽  
Farallon J. Broughton ◽  
Lauren N. Dykman ◽  
Armand M. Kuris ◽  
...  

AbstractWe built a high-resolution topological food web for the kelp forests of the Santa Barbara Channel, California, USA that includes parasites and significantly improves resolution compared to previous webs. The 1,098 nodes and 21,956 links in the web describe an economically, socially, and ecologically vital system. Nodes are broken into life-stages, with 549 free-living life-stages (492 species from 21 Phyla) and 549 parasitic life-stages (450 species from 10 Phyla). Links represent three kinds of trophic interactions, with 9,352 predator-prey links, 2,733 parasite-host links and 9,871 predator-parasite links. All decisions for including nodes and links are documented, and extensive metadata in the node list allows users to filter the node list to suit their research questions. The kelp-forest food web is more species-rich than any other published food web with parasites, and it has the largest proportion of parasites. Our food web may be used to predict how kelp forests may respond to change, will advance our understanding of parasites in ecosystems, and fosters development of theory that incorporates large networks.


2020 ◽  
Vol 148 (4) ◽  
pp. 2773-2773
Author(s):  
Megan Wood ◽  
Mark Baumgartner ◽  
Morgan Visalli ◽  
Ana Širović

Sign in / Sign up

Export Citation Format

Share Document