Rate of proton intensity decay in solar cosmic ray events as a generalized characteristic of the interplanetary space

Author(s):  
E. I. Daibog ◽  
Yu. I. Logachev ◽  
K. Kecskeméty
1987 ◽  
Vol 132 (2) ◽  
pp. 277-306 ◽  
Author(s):  
L. I. Dorman ◽  
M. E. Katz ◽  
S. F. Nosov ◽  
M. Stehl�k

Nature ◽  
1960 ◽  
Vol 186 (4721) ◽  
pp. 299-300 ◽  
Author(s):  
H. ELLIOT

The daily variation of cosmic ray intensity at low latitudes can under certain conditions be associated with an anisotropy of primary radiation. During 1957-8, this anisotropy had an energy spectrum of variation of the form aϵ -0.8±0.3 and corresponded to a source situated at an angle of 112 ± 10° to the left of the earth-sun line. The daily variation which can be associated with a local source situated along the earth-sun line has an energy spectrum of variation of the form aϵ 0 . Increases in east-west asymmetry and the associated daily variation for east and west directions can be explained by the acceleration of cosmic ray particles crossing beams of solar plasma in the neighbourhood of the earth. For beams of width 5 x 10 12 cm with a frozen magnetic field of the order of 10 -4 G, a radial velocity of about 1.5 x 108 cm/s is required. The process is possible only if the ejection of beams takes place in rarefied regions of inter­ planetary space which extend radially over active solar regions. An explanation of Forbush, type decreases observed at great distances from the earth requires similar limitation on the plasma density and conductivity of regions of interplanetary space. The decrease of east-west asymmetry associated with world-wide decreases of intensity and with SC magnetic storms is consistent with a screening of the low-energy cosmic ray particles due to magnetic fields in plasma clouds.


1958 ◽  
Vol 6 ◽  
pp. 377-385
Author(s):  
V. Sarabhai ◽  
N. W. Nerurkar ◽  
S. P. Duggal ◽  
T. S. G. Sastry

Study of the anisotropy of cosmic rays from the measurement of the daily variation of meson intensity has demonstrated that there are significant day-today changes in the anisotropy of the radiation. New experimental data pertaining to these changes and their solar and terrestrial relationships are discussed.An interpretation of these changes of anisotropy in terms of the modulation of cosmic rays by streams of matter emitted by the sun is given. In particular, an explanation for the existence of the recently discovered types of daily variations exhibiting day and night maxima respectively, can be found by an extension of some ideas of Alfvén, Nagashima, and Davies. An integrated attempt is made to interpret the known features of the variation of cosmic ray intensity in conformity with ideas developed above.


1997 ◽  
Vol 166 ◽  
pp. 177-186 ◽  
Author(s):  
G.E. Morfill ◽  
M.J. Freyberg

AbstractThe current status of observations of energetic particles in the “local bubble” is reviewed. This includes primarily “direct” measurements of cosmic rays made in the Solar System, but also the “remote sensing” made possible by observing cosmic ray produced γ-rays in the nearby interstellar clouds. Since the energetic events responsible for the formation of our local bubble may also have produced copious amounts of cosmic rays, fossil records are examined to determine whether there is a corresponding signature. The observations show that: 1) the cosmic ray (proton) intensity is fairly homogeneous throughout the local bubble and its adjacent interstellar clouds, 2) there is some evidence for a “recent” local cosmic ray injection about 40,000 years ago, 3) on longer time scales (a few million years) the cosmic ray intensity was constant within a factor two, 4) there is apparently some “activity” in the Orion cloud, as evidenced by low energy γ-ray signatures, and 5) there are two unexplained observations – the variations in the energy spectra, in particular the significantly flatter spectrum of heavy cosmic rays (Fe) and the matter path length variation, which yields consistently larger path lengths for the lighter elements (H, He). It is suggested that these observations are compatible with two cosmic ray populations – an older one in equilibrium with losses from the galaxy and a younger one which is not yet strongly affected by losses. The latter could be a cosmic ray signature of the formation of the local bubble.


Sign in / Sign up

Export Citation Format

Share Document