ray diffusion
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 13)

H-INDEX

28
(FIVE YEARS 2)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
P. Reichherzer ◽  
L. Merten ◽  
J. Dörner ◽  
J. Becker Tjus ◽  
M. J. Pueschel ◽  
...  

AbstractCosmic-ray transport in astrophysical environments is often dominated by the diffusion of particles in a magnetic field composed of both a turbulent and a mean component. This process, which is two-fold turbulent mixing in that the particle motion is stochastic with respect to the field lines, needs to be understood in order to properly model cosmic-ray signatures. One of the most important aspects in the modeling of cosmic-ray diffusion is that fully resonant scattering, the most effective such process, is only possible if the wave spectrum covers the entire range of propagation angles. By taking the wave spectrum boundaries into account, we quantify cosmic-ray diffusion parallel and perpendicular to the guide field direction at turbulence levels above 5% of the total magnetic field. We apply our results of the parallel and perpendicular diffusion coefficient to the Milky Way. We show that simple purely diffusive transport is in conflict with observations of the inner Galaxy, but that just by taking a Galactic wind into account, data can be matched in the central 5 kpc zone. Further comparison shows that the outer Galaxy at $$>5$$ > 5  kpc, on the other hand, should be dominated by perpendicular diffusion, likely changing to parallel diffusion at the outermost radii of the Milky Way.


2021 ◽  
Vol 910 (2) ◽  
pp. 126
Author(s):  
Vadim A. Semenov ◽  
Andrey V. Kravtsov ◽  
Damiano Caprioli

Author(s):  
Mayur B Shende ◽  
Prashali Chauhan ◽  
Prasad Subramanian

Abstract The temporal behaviour of X-rays from some AGN and microquasars is thought to arise from the rapid collapse of the hot, inner parts of their accretion discs. The collapse can occur over the radial infall timescale of the inner accretion disc. However, estimates of this timescale are hindered by a lack of knowledge of the operative viscosity in the collisionless plasma comprising the inner disc. We use published simulation results for cosmic ray diffusion through turbulent magnetic fields to arrive at a viscosity prescription appropriate to hot accretion discs. We construct simplified disc models using this viscosity prescription and estimate disc collapse timescales for 3C 120, 3C 111, and GRS 1915+105. The Shakura-Sunyaev α parameter resulting from our model ranges from 0.02 to 0.08. Our inner disc collapse timescale estimates agree well with those of the observed X-ray dips. We find that the collapse timescale is most sensitive to the outer radius of the hot accretion disc.


2020 ◽  
Vol 102 (10) ◽  
Author(s):  
Andrej Dundovic ◽  
Oreste Pezzi ◽  
Pasquale Blasi ◽  
Carmelo Evoli ◽  
William H. Matthaeus

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2997
Author(s):  
Wojciech Zielinski ◽  
Piotr Kamedulski ◽  
Aleksander Smolarkiewicz-Wyczachowski ◽  
Malgorzata Skorupska ◽  
Jerzy P. Lukaszewicz ◽  
...  

The N-doped hybrid carbon materials containing amorphous carbon nanotubes (ACNTs) were obtained by free growth of a polymer at 200 °C. The improvement of electrical conductivity was achieved by a final carbonization at 600–800 °C under the flow of nitrogen. The microstructure of ACNT/N-doped hybrids was characterized using a transmission electron microscope and X-ray diffusion. Furthermore, their elemental composition was measured using energy-dispersive X-ray spectroscopy and an elemental analyzer. The experimental results indicated that the ACNTs had a diameter in the range of 40–60 nm and the N-doped carbon background contained nitrogen atoms in most bonded pyrrolic-N and quaternary-N groups. The results revealed that the microstructure of the as-grown nanotubes, prepared by the proposed method, is mainly amorphous. This technique introduces the advantages of low cost and process simplicity, which may redeem some drawbacks of the methods commonly used in ACNT synthesis.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Liu Liu ◽  
Jintao He ◽  
Mei Ye ◽  
Zhanyun Zhu ◽  
Qing Zhong ◽  
...  

The Kizil Cave-Temple Complex has been registered as a World Heritage site and was formerly a part of Kucha—one of the most powerful and prosperous regions of ancient China. The No. 1 Cave is of great significance due to its three surviving clay sculptures. The mural paintings inside the cave are experiencing severe degradation. Scientific methods such as optical microscopy (OM), scanning electron microscopy combined with energy dispersive X-ray analysis (SEM-EDS), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray diffusion (XRD) were applied to analyze the pigments and organic coating used in the No. 1 Cave. The results show that paratacamite, gypsum, and lapis lazuli were used as the green, white, and blue pigments, respectively. Poly-n-butyl methacrylate (PBMA) was used as an organic coating of the blue pigment and has accelerated the aging of the mural paintings. This study shares insights into the materials and techniques employed and assesses the preservation status of the mural paintings, providing scientific support for protection and restoration schemes.


Sign in / Sign up

Export Citation Format

Share Document