Longitudinal variability of low-latitude total electron content: Tidal influences

2008 ◽  
Vol 113 (A1) ◽  
pp. n/a-n/a ◽  
Author(s):  
L. Scherliess ◽  
D. C. Thompson ◽  
R. W. Schunk
2008 ◽  
Vol 26 (4) ◽  
pp. 893-903 ◽  
Author(s):  
◽  
◽  
◽  

Abstract. Sometimes the ionospheric total electron content (TEC) is significantly enhanced during low geomagnetic activities before storms. In this article, we investigate the characteristics of those interesting TEC enhancements using regional and global TEC data. We analyzed the low-latitude TEC enhancement events that occurred around longitude 120° E on 10 February 2004, 21 January 2004, and 4 March 2001, respectively. The TEC data are derived from regional Global Positioning System (GPS) observations in the Asia/Australia sector as well as global ionospheric maps (GIMs) produced by Jet Propulsion Laboratory (JPL). Strong enhancements under low geomagnetic activity before the storms are simultaneously presented at low latitudes in the Asia/Australia sector in regional TEC and JPL GIMs. These TEC enhancements are shown to be regional events with longitudinal and latitudinal extent. The regions of TEC enhancements during these events are confined at narrow longitude ranges around longitude 120° E. The latitudinal belts of maxima of enhancements locate around the northern and southern equatorial ionization anomaly (EIA) crests, which are consistent with those low-latitude events presented by Liu et al. (2008). During the 4 March 2001 event, the total plasma density Ni observed by the Defense Meteorological Satellite Program (DMSP) spacecraft F13 at 840 km altitude are of considerably higher values on 4 March than on the previous day in the TEC enhanced regions. Some TEC enhancement events are possibly due to contributions from auroral/magnetospheric origins; while there are also quasi-periodic enhancement events not related to geomagnetic activity and associated probably with planetary wave type oscillations (e.g. the 6 January 1998 event). Further investigation is warrented to identify/separate contributions from possible sources.


2020 ◽  
Vol 41 (4) ◽  
pp. 897-931 ◽  
Author(s):  
César Buchile Abud de Oliveira ◽  
Teddy Modesto Surco Espejo ◽  
Alison Moraes ◽  
Emanoel Costa ◽  
Jonas Sousasantos ◽  
...  

2018 ◽  
Vol 123 (9) ◽  
pp. 7889-7905 ◽  
Author(s):  
Jean Claude Uwamahoro ◽  
John Bosco Habarulema ◽  
Patrice Martin Okouma

2005 ◽  
Vol 23 (7) ◽  
pp. 2449-2456 ◽  
Author(s):  
N. Dashora ◽  
R. Pandey

Abstract. A GSV 4004A GPS receiver has been operational near the crest of the equatorial anomaly at Udaipur, India for some time now. The receiver provides the line-of-sight total electron content (TEC), the phase and amplitude scintillation index, σφ and S4, respectively. This paper presents the first results on the nighttime TEC depletions associated with the equatorial spread F in the Indian zone. The TEC depletions are found to be very well correlated with the increased S4 index. A new feature of low-latitude TEC is also reported, concerning the observation of isolated and localized TEC enhancements in the nighttime low-latitude ionosphere. The TEC enhancements are not correlated with the S4 index. The TEC enhancements have also been observed along with the TEC depletions. The TEC enhancements have been interpreted as the manifestation of the plasma density enhancements reported by Le et al. (2003). Keywords. Ionosphere (Equatorial ionosphere; Ionospheric irregularities)


2018 ◽  
Author(s):  
Geoffrey Andima ◽  
Emirant B. Amabayo ◽  
Edward Jurua ◽  
Pierre J. Cilliers

Abstract. In this paper, an empirical total electron content (TEC) model and trends in TEC over the African low latitude region are presented. GPS-derived TEC data from Malindi, Kenya (geographic coordinates 40.194° E, 2.996° S) and global ionospheric maps (GIMs) were used. We employed empirical orthogonal function (EOF) analysis method together with least square regression to model the TEC. The EOF-based TEC model was validated through comparisons with GIMs, GPS-derived TEC and TEC derived from the International Reference Ionosphere-2016 (IRI-2016) model for selected quiet and storm conditions. The single station EOF-based TEC model over Malindi satisfactory reproduced the known diurnal, semiannual and annual variations in the TEC. Comparison of the EOF-based TEC model results with TEC derived from IRI-2016 model showed that the EOF-based model predicted the TEC over Malindi with less errors than the IRI-2016. For the selected storms, the EOF-based TEC model simulated the storm time TEC response over Malindi better than the IRI-2016. In the case of the regional model, the EOF-based TEC model was able to reproduce the TEC characteristics in the equatorial ionization anomaly region. The EOF-based TEC model was then used as a background in estimating TEC trends. A latitudinal dependence in the trends was observed over the African low latitude region.


2011 ◽  
Vol 29 (10) ◽  
pp. 1765-1778 ◽  
Author(s):  
P. M. de Siqueira ◽  
E. R. de Paula ◽  
M. T. A. H. Muella ◽  
L. F. C. Rezende ◽  
M. A. Abdu ◽  
...  

Abstract. In this work the response of the ionosphere due to the severe magnetic storm of 7–10 November 2004 is investigated by analyzing GPS Total Electron Content (TEC) maps constructed for the South America sector. In order to verify the disturbed zonal electric fields in South America during the superstorm, ionospheric vertical drift data obtained from modeling results are used in the analysis. The vertical drifts were inferred from ΔH magnetometer data (Jicamarca-Piura) following the methodology presented by Anderson et al. (2004). Also used were vertical drifts measured by the Jicamarca ISR. Data from a digisonde located at São Luís, Brazil (2.33° S, 44.2° W, dip latitude 0.25°) are presented to complement the Jicamarca equatorial data. Penetration electric fields were observed by the comparison between the equatorial vertical drifts and the Interplanetary Electric Field (IEF). The TEC maps obtained from GPS data reflect the ionospheric response over the South America low-latitude and equatorial region. They reveal unexpected plasma distributions and TEC levels during the main phase of the superstorm on 7 November, which is coincident with the local post-sunset hours. At this time an increase in the pre-reversal enhancement was expected to develop the Equatorial Ionization Anomaly (EIA) but we observed the absence of EIA. The results also reveal well known characteristics of the plasma distributions on 8, 9, and 10 November. The emphasized features are the expansion and intensification of EIA due to prompt penetration electric fields on 9 November and the inhibition of EIA during post-sunset hours on 7, 8, and 10 November. One important result is that the TEC maps provided a bi-dimensional view of the ionospheric changes offering a spatial description of the electrodynamics involved, which is an advantage over TEC measured by isolated GPS receivers.


Sign in / Sign up

Export Citation Format

Share Document