low latitude
Recently Published Documents


TOTAL DOCUMENTS

2781
(FIVE YEARS 573)

H-INDEX

82
(FIVE YEARS 9)

2022 ◽  
pp. 1-59
Author(s):  
Paul J. Kushner ◽  
Russell Blackport ◽  
Kelly E. McCusker ◽  
Thomas Oudar ◽  
Lantao Sun ◽  
...  

Abstract Analyzing a multi-model ensemble of coupled climate model simulations forced with Arctic sea-ice loss using a two-parameter pattern-scaling technique to remove the cross-coupling between low- and high-latitude responses, the sensitivity to high-latitude sea-ice loss is isolated and contrasted to the sensitivity to low-latitude warming. In spite of some differences in experimental design, the Northern Hemisphere near-surface atmospheric sensitivity to sea-ice loss is found to be robust across models in the cold season; however, a larger inter-model spread is found at the surface in boreal summer, and in the free tropospheric circulation. In contrast, the sensitivity to low-latitude warming is most robust in the free troposphere and in the warm season, with more inter-model spread in the surface ocean and surface heat flux over the Northern Hemisphere. The robust signals associated with sea-ice loss include upward turbulent and longwave heat fluxes where sea-ice is lost, warming and freshening of the Arctic ocean, warming of the eastern North Pacific relative to the western North Pacific with upward turbulent heat fluxes in the Kuroshio extension, and salinification of the shallow shelf seas of the Arctic Ocean alongside freshening in the subpolar North Atlantic. In contrast, the robust signals associated with low-latitude warming include intensified ocean warming and upward latent heat fluxes near the western boundary currents, freshening of the Pacific Ocean, salinification of the North Atlantic, and downward sensible and longwave fluxes over the ocean.


Author(s):  
E.-H. Kim ◽  
J. R. Johnson ◽  
K. Nykyri

The Kelvin–Helmholtz (KH) instability of magnetohydrodynamic surface waves at the low latitude boundary layer is examined using both an eigenfrequency analysis and a time-dependent wave simulation. The analysis includes the effects of sheared flow and Alfvén velocity gradient. When the magnetosheath flows are perpendicular to the ambient magnetic field direction, unstable KH waves that propagate obliquely to the sheared flow direction occur at the sheared flow surface when the Alfvén Mach number is higher than an instability threshold. Including a shear transition layer between the magnetosphere and magnetosheath leads to secondary KH waves (driven by the sheared flow) that are coupled to the resonant surface Alfvén wave. There are remarkable differences between the primary and the secondary KH waves, including wave frequency, the growth rate, and the ratio between the transverse and compressional components. The secondary KH wave energy is concentrated near the shear Alfvén wave frequency at the magnetosheath with a lower frequency than the primary KH waves. Although the growth rate of the secondary KH waves is lower than the primary KH waves, the threshold condition is lower, so it is expected that these types of waves will dominate at a lower Mach number. Because the transverse component of the secondary KH waves is stronger than that of the primary KH waves, more efficient wave energy transfer from the boundary layer to the inner magnetosphere is also predicted.


MAUSAM ◽  
2022 ◽  
Vol 53 (3) ◽  
pp. 349-358
Author(s):  
R. P. KANE

The 12-monthly running means of CFC-11 and CFC-12 were examined for 1977-1992. As observed by earlier workers, during 1977-1988, there was a rapid, almost linear increase of these compounds, ~70% in the northern and ~77% in the southern hemisphere. From 1988 up to 1992, growth rates were slower, more so for CFC-11 in the northern hemisphere. Superposed on this pattern were QBO, QTO (Quasi-Biennial and Quasi-Triennial Oscillations). A spectral analysis of the various series indicated the following. The 50 hPa low latitude zonal wind had one prominent QBO peak at 2.58 years and much smaller peaks at 2.00 (QBO) and 5.1 years. The Southern oscillation index represented by (T-D), Tahiti minus Darwin atmospheric pressure, had a prominent peak at 4.1 years and a smaller peak at 2.31 years. CFC-11 had only one significant peak at 3.7 years in the southern hemisphere, roughly similar to the 4.1 year (T-D) peak. CFC-12 had prominent QBO (2.16-2.33 years) in both the hemispheres and a QTO (3.6 years) in the southern hemisphere. For individual locations, CFC-11 showed barely significant QBO in the range (1.95-3.07 years), while CFC 12 showed strong QBO in the range (1.86-2.38 years). The difference in the spectral characteristics of CFC-11 and CFC 12 time series is attributed to differences in their lifetimes (44 and 180 years), source emission rates and transport processes.


2022 ◽  
pp. 1-52

Abstract This study investigates the impact of the Indian and East Asian summer monsoons on the diurnal temperature range (DTR) in the low-latitude highlands of China (CLLH) based on in-situ DTR observations, ERA5 reanalysis data, and numerical simulations. Diagnoses indicate that the DTR in the CLLH shows a significant positive correlation with the Indian summer monsoon (ISM), while a negative correlation with the East Asian summer monsoon (EASM). When a strengthened ISM occurs with a weakened EASM, an anomalous anticyclonic circulation with downward motion is excited over the CLLH. This anomalous circulation pattern increases the DTR in the rainy season by reducing the medium and high cloud cover in the CLLH. When a weakened ISM with a strengthened EASM decreases the DTR over the CLLH in the rainy season. Numerical experiments help to verify this crucial physical process linking the variability of the ISM and EASM with the DTR in the CLLH. The model results further indicate that the covariability of ISM and EASM contributes most to the variability of the rainy season DTR in the CLLH, followed by the individual variability of the EASM, and the smallest contribution to the rainy season DTR in the CLLH is the individual variability of the ISM.


2022 ◽  
Author(s):  
Motoharu Nowada ◽  
Adrian Grocott ◽  
Quan-Qi Shi

Abstract. We investigate ionospheric flow patterns from 28th January 2002 associated with the development of the nightside distorted end of a “J”-shaped Transpolar Arc (nightside distorted TPA). Based on the nightside ionospheric flows near to the TPA, detected by the SuperDARN radars, we discuss how the distortion of the nightside end toward the pre-midnight sector is produced. The “J”-shaped TPA was seen under southward Interplanetary Magnetic Field (IMF) conditions, in the presence of a dominant dawnward IMF-By component. At the onset time of the nightside distorted TPA, particular equatorward plasma flows at the TPA growth point were observed in the post-midnight sector, flowing out of the polar cap and then turning toward the pre-midnight sector of the main auroral oval along the distorted nightside part of the TPA. We suggest that these plasma flows play a key role in causing the nightside distortion of the TPA. SuperDARN also found ionospheric flows typically associated with “Tail Reconnection during IMF Northward Non-substorm Intervals” (TRINNIs) on the nightside main auroral oval before and during the TPA interval, indicating that nightside magnetic reconnection is an integral process to the formation of the nightside distorted TPA. During the TPA growth, SuperDARN also detected anti-sunward flows across the open-closed field line boundary on the dayside that indicate the occurrence of low-latitude dayside reconnection and ongoing Dungey cycle driving. This suggests that nightside distorted TPA can grow even in Dungey-cycle-driven plasma flow patterns.


Author(s):  
Sirish Kumar Pagoti ◽  
Bala Sai Srilatha Indira Dutt Vemuri ◽  
Ganesh Laveti

If any Global Positioning System (GPS) receiver is operated in low latitude regions or urban canyons, the visibility further reduces. These system constraints lead to many challenges in providing precise GPS position accuracy over the Indian subcontinent. As a result, the standalone GPS accuracy does not meet the aircraft landing requirements, such as Category I (CAT-I) Precision Approaches. However, the required accuracy can be achieved by augmenting the GPS. Among all these issues, the predominant factors that significantly influence the receiver position accuracy are selecting a user/receiver position estimation algorithm. In this article, a novel method is proposed based on correntropy and designated as Correntropy Kalman Filter (CKF) for precise GPS applications and GPS Aided Geosynchronous equatorial orbit Augmented Navigation (GAGAN) based aircraft landings over the low latitude Indian subcontinent. The real-world GPS data collected from a dual-frequency GPS receiver located in the southern region of the Indian subcontinent (IISc), Bangalore with Lat/Long: 13.021°N/ 77.5°E) is used for the performance evaluation of the proposed algorithm. Results prove that the proposed CKF algorithm exhibits significant improvement (up to 34%) in position estimation compared to the traditional Kalman Filter.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Krishna Kumar Singh ◽  
Krishna Kumar Singh

Whistler-triggered VLF emissions recorded at low latitude station Jammu (Geomagnetic latitude = 220 26/ N; L = 1.17) during day time period on 19th February 1999 at 14:35 hrs. IST. The recorded data have been analyzed. Based on whistler-triggered VLF emissions spectrum, the VLF waves propagate along the path with L – values lying between L = 4.4 and 4.38. During the observation period, magnetic activity was very high. Mostly these types of emissions recorded at mid latitudes. These whistler-triggered emission waves propagate along the geomagnetic field lines either in a ducted mode or in a pro-longitudinal mode. Relative amplitude of whistlers waves is almost equal to relative amplitude of triggered emissions. The proposed generation mechanism explains through the dynamic spectra of the whistler-triggered emissions.


MAUSAM ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 59-64
Author(s):  
S.R. KALSI ◽  
S. R. HALDER

In certain seasons and over certain locations, the mid-latitude westerlies invade subtropical and tropical areas. Short wave perturbations moving in the broad mid-latitude westerlies amplify the. long wave troughs creating new baroclinic zones in relatively southern latitudes. These. baroclinic zones Interact .with the low-latitude circulations thus leading to development of new circulation pattern .In which low level easterlies extend northward over the Peninsula, central and northwest .India. The paper describes the role of short waves in the interaction between tropics and mid-latitudes and presents satellite data of a few sequences In which such Interactions have actually taken place.


Sign in / Sign up

Export Citation Format

Share Document