scholarly journals Orbital observations of contemporary dune activity in Endeavor crater, Meridiani Planum, Mars

Author(s):  
Matthew Chojnacki ◽  
Devon M. Burr ◽  
Jeffrey E. Moersch ◽  
Timothy I. Michaels
Icarus ◽  
2015 ◽  
Vol 253 ◽  
pp. 271-295 ◽  
Author(s):  
J. Fernando ◽  
F. Schmidt ◽  
C. Pilorget ◽  
P. Pinet ◽  
X. Ceamanos ◽  
...  

2012 ◽  
Vol 37 (13) ◽  
pp. 1424-1436 ◽  
Author(s):  
S. Silvestro ◽  
L. K. Fenton ◽  
T. I. Michaels ◽  
A. Valdez ◽  
G. G. Ori

2021 ◽  
Author(s):  
Giovanni Baccolo ◽  
Barbara Delmonte ◽  
Paul Niles ◽  
Giannantonio Cibin ◽  
Elena Di Stefano ◽  
...  

<p>On Earth, jarosite is a weathering product forming in acidic-oxidative environments from the alteration of iron-bearing minerals in presence of liquid water. Typical settings where this iron-potassium hydrated sulphate is found, are weathering zones of pyrite-rich deposits, evaporative basins and fumaroles. Jarosite is not only known on Earth, it also occurs on Mars, where it was firstly identified by the Opportunity rover. The mineral was in fact recognized in the finely layered formations outcropping at Meridiani Planum and that were accurately investigated by the rover (Klingelhöfer et al. 2004). Since jarosite requires liquid water to form, its occurrence on Mars has been regarded as an evidence for the presence of liquid water in the geologic past of Mars (Elwood-Madden et al., 2004). Since then, many models have been proposed to describe the environments where the precipitation of Martian jarosite took place. The most accepted ones deal with evaporative basins similar to Earth’s playas, others concern volcanic activity and hydrothermal processes. An alternative proposal predicted that jarosite may have formed as a consequence of weathering of mineral dust trapped in massive ice deposits, i.e. the ice-weathering model (Niles & Michalsky, 2009). The hypothesis that jarosite formed on Mars because of low-temperature, acidic and water limited weathering, is not new (Burns, 1987), but until now no direct evidences were available to support it.</p><p>A potential Earth analogue to investigate such processes is deep Antarctic ice. We present a first investigation of deep ice samples from the Talos Dome ice core (East Antarctica) aimed at the identification of englacial jarosite, so as to support the ice-weathering model. Evidences gathered through independent techniques showed that jarosite is actually present in deep Antarctic ice and results from the weathering of dust trapped into ice. The process is controlled by the re-crystallization of ice grains and the concurrent re-location of impurities at grain-junctions, which both depend on ice depth. This study demonstrates that the deep englacial environment is suitable for jarosite precipitation. Our findings support the hypothesis that, as originally predicted by the ice-weathering model, paleo ice-related processes have been important in the geologic and geochemical history of Mars.</p><p> </p><p><strong>References</strong></p><p>Burns, R. Ferric sulfates on Mars. <em>J. Geophys. Res.</em> <strong>92</strong>, E570-E574 (1987).</p><p>Elwood-Madden et al., 2004. Jarosite as an indicator of water-limited chemical weathering on Mars. <em>Nature</em> <strong>431</strong>, 821-823 (2004).</p><p>Klingelhöfer, G. et al. Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer. <em>Science</em> <strong>306</strong>, 1740-1745 (2004).</p><p>Niles, P. B. & Michalski, J. M. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. <em>Nat. Geosci.</em> <strong>2</strong>, 215-220 (2009).</p>


Author(s):  
Nicholas J. Tosca ◽  
Scott M. McLennan ◽  
M. Darby Dyar ◽  
Elizabeth C. Sklute ◽  
F. Marc Michel

2009 ◽  
Vol 2 (3) ◽  
pp. 215-220 ◽  
Author(s):  
Paul B. Niles ◽  
Joseph Michalski
Keyword(s):  

Author(s):  
Catherine M. Weitz ◽  
William H. Farrand ◽  
Jeffrey R. Johnson ◽  
Iris Fleischer ◽  
Christian Schröder ◽  
...  

The Holocene ◽  
2006 ◽  
Vol 16 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Stephen A. Wolfe ◽  
Jeff Ollerhead ◽  
David J. Huntley ◽  
Olav B. Lian

Past aeolian activity was reconstructed at four dunefields in the prairie parkland and boreal forest of central Saskatchewan to elucidate landscape response to environmental change. Optical ages from stabilized dunes in the boreal transition ecoregion indicate two episodes of activity. The first, at about 11 ka, corresponds to a period of early-Holocene parkland and grassland cover following deglaciation and drainage after about 13.0 ka, and brief establishment of boreal forest. The second, between about 7.5 and 5 ka, corresponds to a period of mid-Holocene parkland-grassland cover. Optical ages from dunefields in the prairie parkland primarily record mid-Holocene activity, between about 7.5 and 4.7 ka, corresponding to a period of grassland cover, with some reworking continuing into the late Holocene. Although this area was deglaciated by about 13.5 ka, there is no evidence of early-Holocene dune activity, suggesting that mid-Holocene activity may have reworked earlier deposits here. Consequently, much of the morphology and stratigraphy observed in these dunefields are associated with mid-Holocene activity, likely associated with increased aridity and reduced vegetation cover at that time. This study provides the most northerly evidence of mid-Holocene dune reactivation on the Great Plains, lending support to the assertion that aeolian activity was widespread at that time.


Author(s):  
I. Fleischer ◽  
J. Brückner ◽  
C. Schröder ◽  
W. Farrand ◽  
E. Tréguier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document