meridiani planum
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 5)

H-INDEX

42
(FIVE YEARS 0)

2021 ◽  
Vol 126 (9) ◽  
Author(s):  
David W. Mittlefehldt ◽  
Ralf Gellert ◽  
Scott vanBommel ◽  
Raymond E. Arvidson ◽  
James W. Ashley ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Emilio Ramírez-Juidías ◽  
Katherine Villavicencio-Valero ◽  
Arthur Borja

Opportunity was launched in 2004 and has been providing interesting data from Mars till 2018. Meridiani Planum was the landing site for the robot. This crater has numerous rock outcrops, which are considered a valuable geological resource that contains keys to the Martian past. In this work, several algorithms have been developed for detecting the possible presence of humidity and vegetation on Mars through the images sent by the Mars Exploration Rover - B Opportunity and by the Viking Orbiter between 1976 and 1980. For this, it was carried out a sedimentary simulation of the study area, as well as an analysis of all the images from the spectral signatures extracted. The results show the existence of three types of water on the surface, as well as concentrations of Neoxanthin, also on landing area surface, that suggest the possible existence of microalgae.


2021 ◽  
Author(s):  
David W. Mittlefehldt ◽  
Ralf Gellert ◽  
Scott J VanBommel ◽  
Raymond E. Arvidson ◽  
James Warren Ashley ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Giovanni Baccolo ◽  
Barbara Delmonte ◽  
Paul Niles ◽  
Giannantonio Cibin ◽  
Elena Di Stefano ◽  
...  

<p>On Earth, jarosite is a weathering product forming in acidic-oxidative environments from the alteration of iron-bearing minerals in presence of liquid water. Typical settings where this iron-potassium hydrated sulphate is found, are weathering zones of pyrite-rich deposits, evaporative basins and fumaroles. Jarosite is not only known on Earth, it also occurs on Mars, where it was firstly identified by the Opportunity rover. The mineral was in fact recognized in the finely layered formations outcropping at Meridiani Planum and that were accurately investigated by the rover (Klingelhöfer et al. 2004). Since jarosite requires liquid water to form, its occurrence on Mars has been regarded as an evidence for the presence of liquid water in the geologic past of Mars (Elwood-Madden et al., 2004). Since then, many models have been proposed to describe the environments where the precipitation of Martian jarosite took place. The most accepted ones deal with evaporative basins similar to Earth’s playas, others concern volcanic activity and hydrothermal processes. An alternative proposal predicted that jarosite may have formed as a consequence of weathering of mineral dust trapped in massive ice deposits, i.e. the ice-weathering model (Niles & Michalsky, 2009). The hypothesis that jarosite formed on Mars because of low-temperature, acidic and water limited weathering, is not new (Burns, 1987), but until now no direct evidences were available to support it.</p><p>A potential Earth analogue to investigate such processes is deep Antarctic ice. We present a first investigation of deep ice samples from the Talos Dome ice core (East Antarctica) aimed at the identification of englacial jarosite, so as to support the ice-weathering model. Evidences gathered through independent techniques showed that jarosite is actually present in deep Antarctic ice and results from the weathering of dust trapped into ice. The process is controlled by the re-crystallization of ice grains and the concurrent re-location of impurities at grain-junctions, which both depend on ice depth. This study demonstrates that the deep englacial environment is suitable for jarosite precipitation. Our findings support the hypothesis that, as originally predicted by the ice-weathering model, paleo ice-related processes have been important in the geologic and geochemical history of Mars.</p><p> </p><p><strong>References</strong></p><p>Burns, R. Ferric sulfates on Mars. <em>J. Geophys. Res.</em> <strong>92</strong>, E570-E574 (1987).</p><p>Elwood-Madden et al., 2004. Jarosite as an indicator of water-limited chemical weathering on Mars. <em>Nature</em> <strong>431</strong>, 821-823 (2004).</p><p>Klingelhöfer, G. et al. Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer. <em>Science</em> <strong>306</strong>, 1740-1745 (2004).</p><p>Niles, P. B. & Michalski, J. M. Meridiani Planum sediments on Mars formed through weathering in massive ice deposits. <em>Nat. Geosci.</em> <strong>2</strong>, 215-220 (2009).</p>


2019 ◽  
pp. 538-554
Author(s):  
Richard V. Morris ◽  
Christian Schröder ◽  
Göstar Klingelhöfer ◽  
David G. Agresti

Life ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 61 ◽  
Author(s):  
Liane Loiselle ◽  
Michael McCraig ◽  
M. Dyar ◽  
Richard Léveillé ◽  
Sean Shieh ◽  
...  

The acidic sulfate-rich waters of the Meridiani Planum region were potentially a habitable environment for iron-oxidizing bacteria on ancient Mars. If life existed in this ancient martian environment, jarosite minerals precipitating in these waters may record evidence of this biological activity. Since the Meridiani jarosite is thermodynamically stable at the martian surface, any biosignatures preserved in the jarosites may be readily available for analysis in the current surface sediments during the ongoing robotic exploration of Mars. However, thermal decomposition experiments indicate that organic compound detection of sediments containing jarosite may be challenging when using pyrolysis experiments; the instrument commonly used to assess organic matter in martian samples. So, here, we assess if the biogenicity of the Meridiani-type jarosites can be determined using complimentary spectroscopic techniques also utilized during the robotic exploration of Mars, including the upcoming ExoMars2020 rover mission. An abiotic jarosite, synthesized following established protocols, and a biological jarosite counterpart, derived from a microbial enrichment culture of Rio Tinto river sediments, were used to compare four spectroscopy techniques employed in the robotic exploration of Mars (Raman spectroscopy, mid-infrared (IR) spectroscopy, visible near-infrared reflectance (VNIR) spectroscopy and Mössbauer spectroscopy) to determine if the complimentary information obtained using these instruments can help elucidate the biological influence of Meridiani-type jarosites. Raman spectral differences might be due to the presence of unreacted reagents in the synthetic spectra and not biological contributions. Reflectance (IR/VNIR) spectra might exhibit minor organic absorption contributions, but are observed in both sample spectra, and do not represent a biosignature. Mössbauer spectra show minor differences in fit parameters that are related to crystal morphology and are unrelated to the biological (i.e., organic) component of the system. Results of this study suggest that the identification of biosignatures in Meridiani-type jarosites using the in situ robotic exploration on Mars may be possible but will be challenging. Our work provides additional insight into extraterrestrial biosignature detection and data interpretation for Mars exploration and indicates that sample return missions are likely required to unequivocally resolve the possible biogenicity of the Meridiani sediments or other jarosite-containing sediments.


2018 ◽  
Vol 4 (12) ◽  
pp. eaau0872 ◽  
Author(s):  
H. Yoshida ◽  
H. Hasegawa ◽  
N. Katsuta ◽  
I. Maruyama ◽  
S. Sirono ◽  
...  

Spherical Fe-oxide concretions on Earth, especially in Utah, USA, have been investigated as an analog of hematite spherules found in Meridiani Planum on Mars to support interpretations of water-rock interactions in early Mars. Although several formation mechanisms have been proposed for the Fe-oxide concretions on Earth, it is still unclear whether these mechanisms are viable because a precise formation process and precursor of the concretions are missing. This paper presents evidence that Fe-oxide concretions in Utah and newly found Fe-oxide concretions in Mongolia had spherical calcite concretions as precursors. Different formation stages of calcite and Fe-oxide concretions observed, both in Utah and Mongolia, indicate that calcite concretions initially formed within eolian sandstone strata and were dissolved by infiltrating Fe-rich acidic waters to form spherical FeO(OH) crusts due to pH buffering. The similarity between these Fe-oxide concretions on Earth and the hematite spherule occurrences in Meridiani Planum, combined with evidence of acid sulfate water influences on Mars, suggest that the hematite spherules also formed from dissolution of preexisting carbonate spherules possibly formed under a dense carbon dioxide early martian atmosphere.


2018 ◽  
Vol 14 (2) ◽  
pp. 652-660 ◽  
Author(s):  
Frank C. Chuang ◽  
Rebecca M. E. Williams

Sign in / Sign up

Export Citation Format

Share Document