aeolian activity
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 31)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
pp. 1-12
Author(s):  
György Sipos ◽  
Slobodan B. Marković ◽  
Milivoj B. Gavrilov ◽  
Alexia Balla ◽  
Dávid Filyó ◽  
...  

Abstract The Deliblato Sands is among the largest uniform dune fields of Europe, with a very pronounced topography reflecting extensive past aeolian events. Although lacking numerical age data, previous researchers have hypothesized various periods of dune formation. Our research goals were to map the main morphological units of the Deliblato Sands, and to provide the first optically stimulated luminescence (OSL) ages for the major dune types. Mapping was carried out using digital elevation models, satellite images, and GPS profiles. Dune development was investigated using OSL. Several tests were performed concerning thermal treatment, signal characteristics, dose recovery, and dose distributions to assess the suitability of sediments for luminescence dating. Based on our results, two dune generations could be identified that differed in morphology and age. Older dune forms are primarily low sand-supply, hairpin-like parabolic dunes that developed from the last glacial maximum until the end of the early Holocene, then became stabilized. Younger, superimposed parabolic dunes record an intensive aeolian signal from the eighteenth and nineteenth centuries. The history of the Deliblato Sands fits with those from other European sand dune areas, and provides further details to understand paleoenvironmental changes in the region.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shengli Yang ◽  
Xiaojing Liu ◽  
Ting Cheng ◽  
Yuanlong Luo ◽  
Qiong Li ◽  
...  

Aeolian sediments hold key information on aeolian history and past environmental changes. Aeolian desertification and extensive land degradation have seriously affected the eco-environment in the Gannan region on the eastern Tibetan Plateau. Understanding the history of aeolian activities can deepen our understanding of the impacts of climatic changes on aeolian activities in the future. This study uses a detailed chronology and multiple proxy analyses of a typical aeolian section in Maqu to reconstruct aeolian activities in the region during the Holocene. Our results showed that aeolian activities have occurred in the eastern Tibetan Plateau since the early Holocene. Magnetic susceptibility, grain size records, and paleosols formation indicated a trend of stepwise weakening in aeolian activities from the early Holocene to the present. The weakening of aeolian activities was divided into three stages: ∼10.0–8.0 ka BP, ∼8.0–4.0 ka BP, and ∼4.0 ka BP to the present. Paleosols were primarily formed after ∼8.0 ka BP, and episodically interrupted aeolian activities processes in the Gannan region. Aeolian activity may increase in the Gannan region as the climate gradually warms. Climatic changes and local hydrological conditions have jointly affected the history of aeolian activities in this region.


Author(s):  
Timothy G. Fisher ◽  
Suzanne J. DeVries-Zimmerman ◽  
Edward C. Hansen ◽  
Julie A. Wolin ◽  
Kenneth Lepper ◽  
...  

Author(s):  
C. Charalambous ◽  
B. McClean J. ◽  
M. Baker ◽  
W. T. Pike ◽  
M. Golombek ◽  
...  

2021 ◽  
Author(s):  
Francesco Comola ◽  
Jasper Kok ◽  
Juan Lora ◽  
Kaylie Cohanim ◽  
Xinting Yu ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Matej Lipar ◽  
Mateja Ferk ◽  
Andrej Šmuc

<p>The Nullarbor Plain is ~200,000 km<sup>2</sup> large planar karst surface in southern Australia, composed of middle Cenozoic shallow-water limestones of Eucla Group. The youngest formation, covering the top of the plain, is middle Miocene extremely fossiliferous sub-tropical Nullarbor Limestone. In the late Middle Miocene the area was uplifted and exposed to terrestrial denudation and erosion since. Although the plain is in general considered extremely flat, the present geomorphological features indicate a relatively complex geomorphology formed by a combination of tectonic deformation, fluvial and aeolian activity and karst denudation. Due to the absence of orogenesis and only minor influence of post-Miocene sediment deposition, the geomorphology of the Nullarbor preserved footprints of Earth processes through a long, middle Miocene-to-present, time span.</p><p>The presence of dry climate and consequent lack of vegetation also aided for numerous meteorite findings, but no visible impact deformations have been recorded. The latter, in combination with capability of the plain to inherit/imprint old geomorphological features, and accessibility of recently built 0.4 arc sec TanDEM-X-DEM by the German Aerospace Centre, motivated the search of a possible meteorite craters with spatial analysis of the plain. The analysis of DEM images revealed a single geomorphological feature with circular uplifted rim (diameter: 1200 m – 1300 m; height: 7 m in relation to outer elevation; width: 200 – 450 m), central uplift (diameter: 500 m; height: 10 m in relation to outer elevation), and a circular trough in between (2 – 3 m higher than outer elevation). Its morphology differs from other geomorphological features observable on the Nullarbor Plain, and represents a unique phenomenon, which cannot be explained as a part of tectonic, volcanic, fluvial, karst or aeolian processes.</p><p>This feature is therefore a candidate for a possible relict of a meteorite crater, which occurrence is supported by topographical characteristics including uniqueness of the shape compared to other features on the plain. On the other hand, geological characteristics of the exposed rock within the “crater” lack any of the general diagnostic evidence for impact events (e.g., shocked quartz, brecciation), but rather indicate presence of boundstones with frame-builders preserved in in-situ position and thus suggesting the preservation of a bioherm. The occurrences of bioherms, however, are seldom individual (unlike impact craters) and more likely occur in clusters. The question remaining for this conference discussion is whether dissolutional imprinting of an impact crater could denude any of the characteristic impact structures whilst preserving the shape, or are we looking at a single bioherm preserved as a primary marine depositional feature?</p><p>ACKNOWLEDGEMENT: We acknowledge the financial support of Slovenian Research Agency (P6-0101; I0-0031; N1-0162), the Australian Speleological Federation Karst Conservation Fund and TerraSAR-X / TanDEM-X (DEM_GEOL2288).</p>


2021 ◽  
Vol 217 (1) ◽  
Author(s):  
C. E. Newman ◽  
M. de la Torre Juárez ◽  
J. Pla-García ◽  
R. J. Wilson ◽  
S. R. Lewis ◽  
...  

AbstractNine simulations are used to predict the meteorology and aeolian activity of the Mars 2020 landing site region. Predicted seasonal variations of pressure and surface and atmospheric temperature generally agree. Minimum and maximum pressure is predicted at $\text{Ls}\sim 145^{\circ}$ Ls ∼ 145 ∘ and $250^{\circ}$ 250 ∘ , respectively. Maximum and minimum surface and atmospheric temperature are predicted at $\text{Ls}\sim 180^{\circ}$ Ls ∼ 180 ∘ and $270^{\circ}$ 270 ∘ , respectively; i.e., are warmest at northern fall equinox not summer solstice. Daily pressure cycles vary more between simulations, possibly due to differences in atmospheric dust distributions. Jezero crater sits inside and close to the NW rim of the huge Isidis basin, whose daytime upslope (∼east-southeasterly) and nighttime downslope (∼northwesterly) winds are predicted to dominate except around summer solstice, when the global circulation produces more southerly wind directions. Wind predictions vary hugely, with annual maximum speeds varying from 11 to $19~\text{ms}^{-1}$ 19 ms − 1 and daily mean wind speeds peaking in the first half of summer for most simulations but in the second half of the year for two. Most simulations predict net annual sand transport toward the WNW, which is generally consistent with aeolian observations, and peak sand fluxes in the first half of summer, with the weakest fluxes around winter solstice due to opposition between the global circulation and daytime upslope winds. However, one simulation predicts transport toward the NW, while another predicts fluxes peaking later and transport toward the WSW. Vortex activity is predicted to peak in summer and dip around winter solstice, and to be greater than at InSight and much greater than in Gale crater.


2020 ◽  
Vol 47 (1) ◽  
pp. 124-137
Author(s):  
Piotr Moska ◽  
Zdzisław Jary ◽  
Robert Jan Sokołowski ◽  
Grzegorz Poręba ◽  
Jerzy Raczyk ◽  
...  

AbstractThe stratigraphy of Late Pleniglacial and Late Glacial fluvio-to-aeolian succession was investigated in two sites located at the Niemodlin Plateau, SW Poland. Lithofacial analysis was used for the reconstruction of sedimentary environments. An absolute chronology for climatic change and the resulting environmental changes were determined based on optically stimulated luminescence (OSL – nine samples) and radiocarbon (three samples) dating methods. Four phases of changes in sedimentary environments were established. The first depositional phase correlates with the Last Permafrost Maximum (24−17 ka) based on the type and size of the periglacial structures, which aggraded under continuous permafrost conditions. During 17.5−15.5 ka (upper Late Pleniglacial), a stratigraphic gap was detected, owing to a break in the deposition on the interfluve area. The second depositional phase took place during 15.5−13.5 ka. During this phase, the first part of the dune formation (Przechód site) and fluvio-aeolian cover (Siedliska site) was deposited. The sedimentary processes continued throughout the entire Bølling interstadial and Older Dryas. In the third phase (Allerød interstadial), soil formation took place. At the Siedliska site, palaeosol represented Usselo soil type, whereas at the Przechód site, there was a colluvial type of soil. The last phase (Younger Dryas) is represented by the main phase of dune formation in both sites. After the Younger Dryas, no aeolian activity was detected. High compliance with both absolute dating methods was noticed.


2020 ◽  
Vol 47 (1) ◽  
pp. 171-186
Author(s):  
Edit Thamó-Bozsó ◽  
Gábor Csillag ◽  
Judit Füri ◽  
Attila Nagy ◽  
Árpád Magyari

AbstractThe numerical ages available for the sediments on the Danube terraces in the Pest Plain are scarce. In this study, we present quartz OSL and K feldspar post-IR IRSL290 ages for the sandy fluvial, aeolian and slope sediments collected from Danube terraces IIb, III and V.The feldspar post-IR IRSL290 ages without residual dose subtraction are older than the quartz OSL ages, except for one sample, but the two sets of ages are overlapping within one or two sigma errors.In the bleaching experiment under natural sunlight during summer, an unbleachable component ranging from 2.5±0.7 Gy to 5.2±0.3 Gy after 30 h exposure to bright sunshine is observed and it corresponds to 3−8% of the measured K feldspar post-IR IRSL290 equivalent doses. These facts indicate that residual dose subtraction would be necessary before age calculation, in most cases.The saturated fluvial gravelly sand of terrace V of the Danube is older than ~ 296 ka based on feldspar post-IR IRSL290 measurements. This age does not contradict the traditional terrace chronology and the earlier published age data of this terrace. The other studied sediments on the surface of the terraces V, III and IIb deposited much later than the formation of these terraces. They infer aeolian activity and fluvial sedimentation of small streams during the MIS 3 and MIS 2 periods. The age of the dated dune sands with coeval aeolian sediments in Hungary indicate the cold and dry periods with strong wind activity of the Late Weichselian.


Sign in / Sign up

Export Citation Format

Share Document