scholarly journals Interannual Coral Δ 14 C Records of Surface Water Exchange Across the Luzon Strait

2019 ◽  
Vol 124 (1) ◽  
pp. 491-505 ◽  
Author(s):  
R. D. Ramos ◽  
N. F. Goodkin ◽  
E. R. M. Druffel ◽  
T. Y. Fan ◽  
F. P. Siringan
2015 ◽  
Vol 51 (1) ◽  
pp. 198-212 ◽  
Author(s):  
Dylan J. Irvine ◽  
Roger H. Cranswick ◽  
Craig T. Simmons ◽  
Margaret A. Shanafield ◽  
Laura K. Lautz

1997 ◽  
Vol 11 (3) ◽  
pp. 253-267 ◽  
Author(s):  
JOHN A. MORRICE ◽  
H. MAURICE VALETT ◽  
CLIFFORD N. DAHM ◽  
MICHAEL E. CAMPANA

2018 ◽  
Vol 25 (29) ◽  
pp. 29663-29677 ◽  
Author(s):  
Gang Li ◽  
Hailong Li ◽  
Xuejing Wang ◽  
Wenjing Qu ◽  
Yan Zhang

2012 ◽  
Vol 16 (6) ◽  
pp. 1775-1792 ◽  
Author(s):  
S. Krause ◽  
T. Blume ◽  
N. J. Cassidy

Abstract. This paper investigates the patterns and controls of aquifer–river exchange in a fast-flowing lowland river by the conjunctive use of streambed temperature anomalies identified with Fibre-optic Distributed Temperature Sensing (FO-DTS) and observations of vertical hydraulic gradients (VHG). FO-DTS temperature traces along this lowland river reach reveal discrete patterns with "cold spots" indicating groundwater up-welling. In contrast to previous studies using FO-DTS for investigation of groundwater–surface water exchange, the fibre-optic cable in this study was buried in the streambed sediments, ensuring clear signals despite fast flow and high discharges. During the observed summer baseflow period, streambed temperatures in groundwater up-welling locations were found to be up to 1.5 °C lower than ambient streambed temperatures. Due to the high river flows, the cold spots were sharp and distinctly localized without measurable impact on down-stream surface water temperature. VHG patterns along the stream reach were highly variable in space, revealing strong differences even at small scales. VHG patterns alone are indicators of both, structural heterogeneity of the stream bed as well as of the spatial heterogeneity of the groundwater–surface water exchange fluxes and are thus not conclusive in their interpretation. However, in combination with the high spatial resolution FO-DTS data we were able to separate these two influences and clearly identify locations of enhanced exchange, while also obtaining information on the complex small-scale streambed transmissivity patterns responsible for the very discrete exchange patterns. The validation of the combined VHG and FO-DTS approach provides an effective strategy for analysing drivers and controls of groundwater–surface water exchange, with implications for the quantification of biogeochemical cycling and contaminant transport at aquifer–river interfaces.


2019 ◽  
Vol 23 (10) ◽  
pp. 4397-4417 ◽  
Author(s):  
Katie Coluccio ◽  
Leanne Kaye Morgan

Abstract. Braided rivers, while uncommon internationally, are significant in terms of their unique ecosystems and as vital freshwater resources at locations where they occur. With an increasing awareness of the connected nature of surface water and groundwater, there have been many studies examining groundwater–surface water exchange in various types of waterbodies, but significantly less research has been conducted in braided rivers. Thus, there is currently limited understanding of how characteristics unique to braided rivers, such as channel shifting, expanding and narrowing margins, and a high degree of heterogeneity affect groundwater–surface water flow paths. This article provides an overview of characteristics specific to braided rivers, including a map showing the regions where braided rivers are mainly found at the global scale: Alaska, Canada, the Japanese and European Alps, the Himalayas, Russia, and New Zealand. To the authors' knowledge, this is the first map of its kind. This is followed by a review of prior studies that have investigated groundwater–surface water interactions in braided rivers and their associated aquifers. The various methods used to characterise these processes are discussed with emphasis on their effectiveness in achieving the studies' objectives and their applicability in braided rivers. We also discuss additional methods that appear promising to apply in braided river settings. The aim is to provide guidance on methodologies most suitable for future work in braided rivers. In many cases, previous studies found a multi-method approach useful to produce more robust results and compare data collected at various scales. Given the challenges of working directly in braided rivers, there is considerable scope for the increased use of remote sensing techniques. There is also opportunity for new approaches to modelling braided rivers using integrated techniques that incorporate the complex river bed terrain and geomorphology of braided rivers explicitly. We also identify a critical need to improve the conceptual understanding of hyporheic exchange in braided rivers, rates of recharge to and from braided rivers, and historical patterns of dry and low-flow periods in these rivers.


Sign in / Sign up

Export Citation Format

Share Document