hyporheic exchange
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 110)

H-INDEX

43
(FIVE YEARS 6)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262080
Author(s):  
Geoffrey C. Poole ◽  
S. Kathleen Fogg ◽  
Scott J. O’Daniel ◽  
Byron E. Amerson ◽  
Ann Marie Reinhold ◽  
...  

Hyporheic exchange is now widely acknowledged as a key driver of ecosystem processes in many streams. Yet stream ecologists have been slow to adopt nuanced hydrologic frameworks developed and applied by engineers and hydrologists to describe the relationship between water storage, water age, and water balance in finite hydrosystems such as hyporheic zones. Here, in the context of hyporheic hydrology, we summarize a well-established mathematical framework useful for describing hyporheic hydrology, while also applying the framework heuristically to visualize the relationships between water age, rates of hyporheic exchange, and water volume within hyporheic zones. Building on this heuristic application, we discuss how improved accuracy in the conceptualization of hyporheic exchange can yield a deeper understanding of the role of the hyporheic zone in stream ecosystems. Although the equations presented here have been well-described for decades, our aim is to make the mathematical basis as accessible as possible and to encourage broader understanding among aquatic ecologists of the implications of tailed age distributions commonly observed in water discharged from and stored within hyporheic zones. Our quantitative description of “hyporheic hydraulic geometry,” associated visualizations, and discussion offer a nuanced and realistic understanding of hyporheic hydrology to aid in considering hyporheic exchange in the context of river and stream ecosystem science and management.


2022 ◽  
Vol 8 (2) ◽  
Author(s):  
Jennifer D. Drummond ◽  
Uwe Schneidewind ◽  
Angang Li ◽  
Timothy J. Hoellein ◽  
Stefan Krause ◽  
...  

Bidirectional flow between surface water and sediment leads to high accumulation of small and lightweight microplastics in rivers.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 83
Author(s):  
Robyn L. Bilski ◽  
Joseph M. Wheaton ◽  
Joseph E. Merz

Adult salmonids are frequently observed building redds adjacent to in-channel structure, including boulders and large woody debris. These areas are thought to be preferentially selected for a variety of reasons, including energy and/or predation refugia for spawners, and increased hyporheic exchange for incubating embryos. This research sought to quantify in-channel structure effects on local hydraulics and hyporheic flow and provide a mechanistic link between these changes and the survival, development, and growth of Chinook salmon Oncorhynchus tshawytscha embryos. Data were collected in an eight-kilometer reach, on the regulated lower Mokelumne River, in the California Central Valley. Nine paired sites, consisting of an area containing in-channel structure paired with an adjacent area lacking in-channel structure, were evaluated. Results indicated that in-channel structure disrupts surface water velocity patterns, creating pressure differences that significantly increase vertical hydraulic gradients within the subsurface. Overall, in-channel structure did not significantly increase survival, development, and growth of Chinook salmon embryos. However, at several low gradient downstream sites containing in-channel structure, embryo survival, development, and growth were significantly higher relative to paired sites lacking such features. Preliminary data indicate that adding or maintaining in-channel structure, including woody material, in suboptimal spawning reaches improves the incubation environment for salmonid embryos in regulated reaches of a lowland stream. More research examining temporal variation and a full range of incubation depths is needed to further assess these findings.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Dallmann ◽  
C. B. Phillips ◽  
Y. Teitelbaum ◽  
Edwin Y. Saavedra Cifuentes ◽  
N. Sund ◽  
...  

AbstractWhile the ecological significance of hyporheic exchange and fine particle transport in rivers is well established, these processes are generally considered irrelevant to riverbed morphodynamics. We show that coupling between hyporheic exchange, suspended sediment deposition, and sand bedform motion strongly modulates morphodynamics and sorts bed sediments. Hyporheic exchange focuses fine-particle deposition within and below mobile bedforms, which suppresses bed mobility. However, deposited fines are also remobilized by bedform motion, providing a mechanism for segregating coarse and fine particles in the bed. Surprisingly, two distinct end states emerge from the competing interplay of bed stabilization and remobilization: a locked state in which fine particle deposition completely stabilizes the bed, and a dynamic equilibrium in which frequent remobilization sorts the bed and restores mobility. These findings demonstrate the significance of hyporheic exchange to riverbed morphodynamics and clarify how dynamic interactions between coarse and fine particles produce sedimentary patterns commonly found in rivers.


Sign in / Sign up

Export Citation Format

Share Document