A review of “Electrical Resistivity Dynamics beneath a Fractured Sedimentary Bedrock Riverbed in Response to Temperature and Groundwater/Surface Water Exchange” by CM Steelman et al.,

2017 ◽  
Author(s):  
Anonymous
2017 ◽  
Vol 21 (6) ◽  
pp. 3105-3123 ◽  
Author(s):  
Colby M. Steelman ◽  
Celia S. Kennedy ◽  
Donovan C. Capes ◽  
Beth L. Parker

Abstract. Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, and heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater–surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater–surface water interaction beneath a sedimentary bedrock riverbed. Conditions were monitored at a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze–thaw cycle. Surface electromagnetic induction (EMI) and electrical resistivity tomography (ERT) methods captured conditions beneath the riverbed along a pool–riffle sequence of the Eramosa River in Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature, and river stage. Time-lapse vertical temperature trolling within a lined borehole adjacent to the river revealed active groundwater flow zones along fracture networks within the upper 10 m of rock. EMI measurements collected during cooler high-flow and warmer low-flow periods identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and seasonal groundwater temperature. Time-lapse ERT profiles across the pool and riffle sequence identified seasonal transients within the upper 2 and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool versus riffle) and dominant surficial rock properties (competent versus weathered rock rubble surface). While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more variable, largely due to the formation of river ice during the winter season. We show that surface electrical resistivity methods have the capacity to detect and resolve electrical resistivity transience beneath a fractured bedrock riverbed in response to porewater temperature and specific conductance fluctuations over a complete annual cycle.


2016 ◽  
Author(s):  
Colby Steelman ◽  
Celia S. Kennedy ◽  
Donovan Capes ◽  
Beth L. Parker

Abstract. Bedrock rivers occur where surface water flows along an exposed rock surface. Fractured sedimentary bedrock can exhibit variable groundwater residence times, anisotropic flow paths, heterogeneity, along with diffusive exchange between fractures and rock matrix. These properties of the rock will affect thermal transients in the riverbed and groundwater–surface water exchange. In this study, surface electrical methods were used as a non-invasive technique to assess the scale and temporal variability of riverbed temperature and groundwater–surface water exchange beneath a sedimentary bedrock riverbed. Conditions were monitored on a semi-daily to semi-weekly interval over a full annual period that included a seasonal freeze-thaw cycle. Surface electromagnetic induction and electrical resistivity imaging methods captured conditions beneath the riverbed along a pool-riffle sequence within the Eramosa River, Guelph, Ontario, Canada. Geophysical datasets were accompanied by continuous measurements of aqueous specific conductance, temperature and river stage. Vertical temperature profiling conducted in an inclined borehole underlying the river revealed active groundwater flow zones through fracture networks within the upper 10 m of rock. Resistivity measurements during cooler high-flow and warmer low-flow conditions identified a spatiotemporal riverbed response that was largely dependent upon riverbed morphology and groundwater temperature. Time-lapse resistivity profiles collected across the pool and riffle identified seasonal transients within the upper 2 m and 3 m of rock, respectively, with spatial variations controlled by riverbed morphology (pool verses riffle) and dominant surficial rock properties (competent verses weathered rock rubble surface). While the pool and riffle both exhibited a dynamic resistivity through seasonal cooling and warming cycles, conditions beneath the pool were more dynamic, largely due to the formation of river ice. Although seasonal resistivity trends beneath the riverbed suggest groundwater discharge may be influencing the spatiotemporal extent of a groundwater-surface water mixing zone, intraseasonal resistivity transience suggest potential groundwater–surface water exchange across the upper few meters of rock.


2015 ◽  
Vol 51 (1) ◽  
pp. 198-212 ◽  
Author(s):  
Dylan J. Irvine ◽  
Roger H. Cranswick ◽  
Craig T. Simmons ◽  
Margaret A. Shanafield ◽  
Laura K. Lautz

1997 ◽  
Vol 11 (3) ◽  
pp. 253-267 ◽  
Author(s):  
JOHN A. MORRICE ◽  
H. MAURICE VALETT ◽  
CLIFFORD N. DAHM ◽  
MICHAEL E. CAMPANA

2018 ◽  
Vol 25 (29) ◽  
pp. 29663-29677 ◽  
Author(s):  
Gang Li ◽  
Hailong Li ◽  
Xuejing Wang ◽  
Wenjing Qu ◽  
Yan Zhang

2019 ◽  
Vol 124 (1) ◽  
pp. 491-505 ◽  
Author(s):  
R. D. Ramos ◽  
N. F. Goodkin ◽  
E. R. M. Druffel ◽  
T. Y. Fan ◽  
F. P. Siringan

Sign in / Sign up

Export Citation Format

Share Document