New Constraints on the Lunar Optical Space Weathering Rate

Author(s):  
C. J. Tai Udovicic ◽  
E. S. Costello ◽  
R. R. Ghent ◽  
C. S. Edwards
Icarus ◽  
2008 ◽  
Vol 195 (2) ◽  
pp. 663-673 ◽  
Author(s):  
Mark Willman ◽  
Robert Jedicke ◽  
David Nesvorný ◽  
Nicholas Moskovitz ◽  
Željko Ivezić ◽  
...  

1989 ◽  
Vol 20 (2) ◽  
pp. 85-96 ◽  
Author(s):  
Gunnar Jacks ◽  
Göran Åberg ◽  
P. Joseph Hamilton

Strontium isotopes in precipitation, soil and runoff water can be used to establish a ratio of wet plus dry deposited Sr to Sr released by weathering. This ratio is especially enhanced in areas with old acid Proterozoic rocks (0.6-2.5 Ga) and Archean rocks (>2.5 Ga). Since Sr and Ca behave in an analogous way in the coniferous forest ecosystem the results for Sr can be used for the determination of Ca. If the deposition of calcium can be calculated reasonably accurately the weathering rate can also be estimated. Five catchments have been investigated using this approach. Three of them seem to be close to a steady state, wherein the losses and gains of calcium to the system are equal. In the two southern-most catchments there seems to be an ongoing loss of exchangeable calcium. The loss by runoff occurs with sulphate being the dominant anion. Weathering rates of 1.5 to 4.8 kg Ca/ha year have been estimated.


2017 ◽  
Author(s):  
Shalev Siman-Tov ◽  
◽  
Greg M. Stock ◽  
Emily E. Brodsky ◽  
Joseph Clancy White

2021 ◽  
Vol 27 (S1) ◽  
pp. 2260-2262
Author(s):  
Alexander Kling ◽  
Michelle Thompson ◽  
Jennika Greer ◽  
Philipp Heck

2021 ◽  
Vol 27 (S1) ◽  
pp. 2048-2051
Author(s):  
Laura Chaves ◽  
Michelle Thompson ◽  
Shoumya Shuvo
Keyword(s):  

2020 ◽  
Vol 17 (2) ◽  
pp. 281-304 ◽  
Author(s):  
Sophie Casetou-Gustafson ◽  
Harald Grip ◽  
Stephen Hillier ◽  
Sune Linder ◽  
Bengt A. Olsson ◽  
...  

Abstract. Reliable and accurate methods for estimating soil mineral weathering rates are required tools in evaluating the sustainability of increased harvesting of forest biomass and assessments of critical loads of acidity. A variety of methods that differ in concept, temporal and spatial scale, and data requirements are available for measuring weathering rates. In this study, causes of discrepancies in weathering rates between methods were analysed and were classified as being either conceptual (inevitable) or random. The release rates of base cations (BCs; Ca, Mg, K, Na) by weathering were estimated in podzolised glacial tills at two experimental forest sites, Asa and Flakaliden, in southern and northern Sweden, respectively. Three different methods were used: (i) historical weathering since deglaciation estimated by the depletion method, using Zr as the assumed inert reference; (ii) steady-state weathering rate estimated with the PROFILE model, based on quantitative analysis of soil mineralogy; and (iii) BC budget at stand scale, using measured deposition, leaching and changes in base cation stocks in biomass and soil over a period of 12 years. In the 0–50 cm soil horizon historical weathering of BCs was 10.6 and 34.1 mmolc m−2 yr−1, at Asa and Flakaliden, respectively. Corresponding values of PROFILE weathering rates were 37.1 and 42.7 mmolc m−2 yr−1. The PROFILE results indicated that steady-state weathering rate increased with soil depth as a function of exposed mineral surface area, reaching a maximum rate at 80 cm (Asa) and 60 cm (Flakaliden). In contrast, the depletion method indicated that the largest postglacial losses were in upper soil horizons, particularly at Flakaliden. With the exception of Mg and Ca in shallow soil horizons, PROFILE produced higher weathering rates than the depletion method, particularly of K and Na in deeper soil horizons. The lower weathering rates of the depletion method were partly explained by natural and anthropogenic variability in Zr gradients. The base cation budget approach produced significantly higher weathering rates of BCs, 134.6 mmolc m−2 yr−1 at Asa and 73.2 mmolc m−2 yr−1 at Flakaliden, due to high rates estimated for the nutrient elements Ca, Mg and K, whereas weathering rates were lower and similar to those for the depletion method (6.6 and 2.2 mmolc m−2 yr−1 at Asa and Flakaliden). The large discrepancy in weathering rates for Ca, Mg and K between the base cation budget approach and the other methods suggests additional sources for tree uptake in the soil not captured by measurements.


2001 ◽  
Vol 36 (2) ◽  
pp. 285-299 ◽  
Author(s):  
Lawrence A. TAYLOR ◽  
Carlé PIETERS ◽  
Lindsay P. KELLER ◽  
Richard V. MORRIS ◽  
David S. McKAY ◽  
...  

2021 ◽  
Author(s):  
Stephanie A Connell ◽  
Nathalie Turenne ◽  
Ed Cloutis ◽  
Matt Driedger ◽  
Ali Barari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document