rocky mountains
Recently Published Documents


TOTAL DOCUMENTS

2625
(FIVE YEARS 254)

H-INDEX

72
(FIVE YEARS 5)

2022 ◽  
Vol 506 ◽  
pp. 119958
Author(s):  
Kiera A.P. Macauley ◽  
Neal McLoughlin ◽  
Jennifer L. Beverly

Author(s):  
Jessica M. Krohner ◽  
Paul M. Lukacs ◽  
Robert Inman ◽  
Joel D. Sauder ◽  
Justin A. Gude ◽  
...  

2021 ◽  
Vol 7 (52) ◽  
Author(s):  
Donovan A. Bell ◽  
Ryan P. Kovach ◽  
Clint C. Muhlfeld ◽  
Robert Al-Chokhachy ◽  
Timothy J. Cline ◽  
...  

2021 ◽  
Author(s):  
David Thomas Liefert ◽  
Bryan Nolan Shuman

Abstract. The use of the climatic anomaly known as the “4.2 ka event” as the stratigraphic division between the mid- and late Holocene has prompted debate over its impact, geographic pattern, and significance. The anomaly has primarily been described as abrupt drying, but evidence of hydroclimate change at ca. 4 ka is inconsistent among sites globally, and few sites in North America document a major drought. Climate records from the southern Rocky Mountains demonstrate the challenge with diagnosing the extent and severity of the anomaly. Dune-field chronologies and a pollen record in southeast Wyoming reveal several centuries of low moisture at around 4.2 ka and prominent low stands in lakes in Colorado suggest the drought was unique amid Holocene variability, but detailed carbonate oxygen isotope (δ18Ocarb) records from Colorado do not record it. We find new evidence from δ18Ocarb in a small mountain lake in southeast Wyoming of an abrupt reduction in effective moisture or snowpack from approximately 4.2–4 ka that coincides in time with the other evidence from the southern Rocky Mountains and the western Great Plains of regional drying at around 4.2 ka. We find that the δ18Ocarb in our record may reflect cool-season inputs into the lake, which do not appear to track the strong enrichment of heavy oxygen by evaporation during summer months today. The modern relationship differs from some widely applied conceptual models of lake-isotope systems and may indicate reduced winter precipitation rather than enhanced evaporation at ca. 4.2 ka. Inconsistencies among the North American records, particularly in δ18Ocarb trends, thus show that site-specific factors can prevent identification of the patterns of multi-century drought. However, the prominence of the drought at ca. 4 ka among a growing number of sites in the North American interior suggests it was a regionally substantial climate event amid other Holocene variability.


Author(s):  
Tianyang Li ◽  
Yu Jeffrey Gu ◽  
Jingchuan Wang ◽  
Ruijia Wang ◽  
Javad Yusifbayov ◽  
...  

Abstract Although hydraulic fracturing-induced earthquakes have been widely reported in Alberta, Canada, only one seismic cluster (the Cordel Field) has thus far been linked to wastewater disposal (WD). In this study, we report a statistically significant spatiotemporal correlation between recent earthquakes and nearby WD wells near Musreau Lake—the second disposal-induced earthquake swarm in Alberta. This newly occurred swarm contains five events with local magnitudes ML>3 from January 2018 to March 2020, forming into three tightly spaced clusters. The refined locations and focal mechanisms suggest a ∼10 km long northwest–southeast-trending rupture along the northern Rocky Mountains that developed over time, during which both poroelastic effects and static stress transfer played key roles. Through a statistical analysis of all reported induced earthquake clusters in the western Canada sedimentary basin (WCSB), we propose a linear predictive relationship (i.e., the “Interpolated Strike Orientation” model) between fault rupture direction and fault distance to the Rocky Mountains. This observation-based model, which is supported by both the focal mechanisms of the natural earthquakes and the nearby northwest-striking geological faults, is a new and useful reference for future assessments of seismic hazard in the WCSB.


2021 ◽  
Author(s):  
Philipp Zschenderlein ◽  
Heini Wernli

Abstract. Precipitation and surface temperature are two of the most important variables that describe our weather and climate. Several previous studies investigated aspects of their relationship, for instance the climatological dependence of daily precipitation on daily mean temperature, P(T). However, the role of specific weather systems in shaping this relationship has not been analysed yet. This study therefore identifies the weather systems (WS) that are associated with intense precipitation days as a function of T, focusing on the question how this relationship, symbolically expressed as P(T,WS), varies regionally across the Northern Hemisphere and between seasons. To this end, we first quantify, if intense precipitation occurs on climatologically warmer or on colder days, respectively. In winter, over most continental and ocean regions, intense precipitation falls on warmer days apart from the Mediterranean area and regions in the lee of the Rocky Mountains, where intense precipitation is favoured on colder days. In summer, only at high latitudes intense precipitation is favoured on warmer days, whereas continental areas experience intense precipitation on colder days. For selected regions in Europe and North America, we then identify the weather systems that occur preferentially on days with intense precipitation (referred to as wet days). In winter, cyclones are slightly dominant on colder wet days, whereas warm conveyor belts and atmospheric rivers occur preferentially on warmer wet days. In summer, the overall influence of atmospheric rivers increases and the occurrence of weather systems depend less on wet day temperature. Wet days in the lee of the Rocky Mountains are influenced by most likely convective systems in anticyclones. Finally, we investigate P(T,WS) during the wettest and driest season in Central Europe and the Central US. In qualitative agreement with the results from the first part of this study, the wettest winter is warmer than normal in Central Europe but colder in the Central US, and the wettest summer is colder in both regions. The opposite holds for the driest winter and summer, respectively. During these anomalous seasons, both the frequency and the precipitation efficiency of weather systems changes in Central Europe, while the wettest and driest seasons in Central US mainly arise from a modified precipitation efficiency. Our results show that the precipitation-temperature-weather system relationship strongly depends on the region, and that (extreme) seasonal precipitation is influenced by the frequency and precipitation efficiency of the different weather systems. This regional variability is reflected in the relative importance of weather system frequency and efficiency anomalies for the formation of anomalously wet and dry seasons.


Sign in / Sign up

Export Citation Format

Share Document