scholarly journals Simultaneous Bayesian Estimation of Non‐Planar Fault Geometry and Spatially‐Variable Slip

Author(s):  
Rishabh Dutta ◽  
Sigurjón Jónsson ◽  
Hannes Vasyura‐Bathke
2020 ◽  
Author(s):  
Rishabh Dutta ◽  
Sigurjón Jónsson ◽  
Hannes Vasyura-Bathke

2020 ◽  
Author(s):  
Rishabh Dutta ◽  
Sigurjón Jónsson ◽  
Hannes Vasyura-Bathke

<p>Earthquake fault ruptures are typically complex and can consist of en echelon segments, have bends, large step-overs, and be curved or warped at different spatial scales. Although surface fault ruptures can be mapped using a variety of geological and geophysical techniques, the subsurface topology of faults is challenging to estimate. One of the main options is to use geodetic data (InSAR and GPS) of coseismic surface deformation to estimate the subsurface earthquake fault geometry along with the distributed slip. The general practice is to assume a planar fault surface and estimate the strike and dip of a simple rectangular fault prior to the spatially-variable slip estimation. Using such simplistic fault geometry during source fault estimations of large earthquakes rarely captures all the crustal deformation details seen in the data and can cause biased estimation results of the fault slip. Here, we show how complex non-planar fault geometry can be estimated simultaneously with spatially-variable slip from geodetic data in a Bayesian framework, where our non-planar fault geometry parametrization approach allows for various undulations of the fault surface in both the along-strike and down-dip directions.</p><p>We exemplify this approach through synthetic tests considering a checkerboard-like slip pattern on a listric non-planar fault. The results show that fault slip can be over-estimated by about 50-100% when using pre-assumed planar fault geometry. In contrast, both the non-planar fault geometry and spatially-variable slip are better retrieved when using our estimation approach. We then apply this modeling approach to the 2011 M<sub>W</sub>9.1 megathrust Tohoku-Oki (Japan) earthquake. Here we use prior information like the location of the trench and earthquake hypocenters during the Bayesian estimation to reduce the extent of the model space. The resulting fault geometry shows variations in fault dip in both the along-strike and down-dip directions that compare well with Hayes’ slab1.0 model of the subduction interface. The estimated fault slip is also comparable to the results that pre-defined the fault geometry using the slab1.0 model. In the future, the proposed method could lead to more realistic source models of major earthquakes, aided by improving computational resources and spatial resolution of geodetic data.</p>


Author(s):  
K. Kuroda ◽  
Y. Tomokiyo ◽  
T. Kumano ◽  
T. Eguchi

The contrast in electron microscopic images of planar faults in a crystal is characterized by a phase factor , where is the reciprocal lattice vector of the operating reflection, and the lattice displacement due to the fault under consideration. Within the two-beam theory a planar fault with an integer value of is invisible, but a detectable contrast is expected when the many-beam dynamical effect is not negligibly small. A weak fringe contrast is also expected when differs slightly from an integer owing to an additional small displacement of the lattice across the fault. These faint contrasts are termed as many-beam contrasts in the former case, and as ε fringe contrasts in the latter. In the present work stacking faults in Cu-Al alloys and antiphase boundaries (APB) in CuZn, FeCo and Fe-Al alloys were observed under such conditions as mentioned above, and the results were compared with the image profiles of the faults calculated in the systematic ten-beam approximation.


Author(s):  
Carolina Palma Naveira Cotta ◽  
Kelvin Chen ◽  
Christopher Tostado ◽  
Philippe Rollemberg d'Egmont ◽  
Fernando Duda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document