scholarly journals Improving the estimate of summer daytime planetary boundary layer height over land from GPS radio occultation data

Author(s):  
Yinjun Wang ◽  
Xubin Zeng ◽  
Xiangde Xu ◽  
Feiqin Xie ◽  
Yang Zhao
2010 ◽  
Vol 23 (21) ◽  
pp. 5790-5809 ◽  
Author(s):  
Shuyan Liu ◽  
Xin-Zhong Liang

Abstract An observational climatology of the planetary boundary layer height (PBLH) diurnal cycle, specific to surface characteristics, is derived from 58 286 fine-resolution soundings collected in 14 major field campaigns around the world. An objective algorithm determining PBLH from sounding profiles is first developed and then verified by available lidar and sodar retrievals. The algorithm is robust and produces realistic PBLH as validated by visual examination of several thousand additional soundings. The resulting PBLH from all existing data is then subject to various statistical analyses. It is demonstrated that PBLH occurrence frequencies under stable, neutral, and unstable regimes follow a narrow, intermediate, and wide Gamma distribution, respectively, over both land and oceans. Over ice all exhibit a narrow distribution. The climatological PBLH diurnal cycle is strong over land and oceans, with a distinct peak at 1500 and 1200 LT, whereas the cycle is weak over ice. Relative to midlatitude land, the PBLH variability over tropical oceans is larger during the morning and at night but much smaller in the afternoon. This study provides a unique observational database for critical model evaluation on the PBLH diurnal cycle and its temporal/spatial variability.


2014 ◽  
Author(s):  
Gregori de Arruda Moreira ◽  
Fabio J. da Silva Lopes ◽  
Juan L. Guerrero-Rascado ◽  
Maria José Granados-Muñoz ◽  
Riad Bourayou ◽  
...  

2021 ◽  
pp. 118919
Author(s):  
Yubing Pan ◽  
Qianqian Wang ◽  
Pengkun Ma ◽  
Xingcan Jia ◽  
Zhiheng Liao ◽  
...  

2021 ◽  
Vol 41 (7) ◽  
pp. 0728002
Author(s):  
于思琪 Yu Siqi ◽  
刘东 Liu Dong ◽  
徐继伟 Xu Jiwei ◽  
王珍珠 Wang Zhenzhu ◽  
吴德成 Wu Decheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document