tropical oceans
Recently Published Documents


TOTAL DOCUMENTS

313
(FIVE YEARS 84)

H-INDEX

48
(FIVE YEARS 6)

2022 ◽  
Vol 15 (1) ◽  
pp. 269-289
Author(s):  
Eduardo Moreno-Chamarro ◽  
Louis-Philippe Caron ◽  
Saskia Loosveldt Tomas ◽  
Javier Vegas-Regidor ◽  
Oliver Gutjahr ◽  
...  

Abstract. We examine the influence of increased resolution on four long-standing biases using five different climate models developed within the PRIMAVERA project. The biases are the warm eastern tropical oceans, the double Intertropical Convergence Zone (ITCZ), the warm Southern Ocean, and the cold North Atlantic. Atmosphere resolution increases from ∼100–200 to ∼25–50 km, and ocean resolution increases from ∼1∘ (eddy-parametrized) to ∼0.25∘ (eddy-present). For one model, ocean resolution also reaches 1/12∘ (eddy-rich). The ensemble mean and individual fully coupled general circulation models and their atmosphere-only versions are compared with satellite observations and the ERA5 reanalysis over the period 1980–2014. The four studied biases appear in all the low-resolution coupled models to some extent, although the Southern Ocean warm bias is the least persistent across individual models. In the ensemble mean, increased resolution reduces the surface warm bias and the associated cloud cover and precipitation biases over the eastern tropical oceans, particularly over the tropical South Atlantic. Linked to this and to the improvement in the precipitation distribution over the western tropical Pacific, the double-ITCZ bias is also reduced with increased resolution. The Southern Ocean warm bias increases or remains unchanged at higher resolution, with small reductions in the regional cloud cover and net cloud radiative effect biases. The North Atlantic cold bias is also reduced at higher resolution, albeit at the expense of a new warm bias that emerges in the Labrador Sea related to excessive ocean deep mixing in the region, especially in the ORCA025 ocean model. Overall, the impact of increased resolution on the surface temperature biases is model-dependent in the coupled models. In the atmosphere-only models, increased resolution leads to very modest or no reduction in the studied biases. Thus, both the coupled and atmosphere-only models still show large biases in tropical precipitation and cloud cover, and in midlatitude zonal winds at higher resolutions, with little change in their global biases for temperature, precipitation, cloud cover, and net cloud radiative effect. Our analysis finds no clear reductions in the studied biases due to the increase in atmosphere resolution up to 25–50 km, in ocean resolution up to 0.25∘, or in both. Our study thus adds to evidence that further improved model physics, tuning, and even finer resolutions might be necessary.


2021 ◽  
Vol 30 (5) ◽  
pp. 105-129
Author(s):  
Takeshi Doi ◽  
Sayaka Yasunaka ◽  
Kazutaka Takahashi ◽  
Michio Watanabe ◽  
Tomoki Tozuka ◽  
...  
Keyword(s):  

2021 ◽  
Vol 21 (18) ◽  
pp. 13729-13746
Author(s):  
Hao Guo ◽  
Clare M. Flynn ◽  
Michael J. Prather ◽  
Sarah A. Strode ◽  
Stephen D. Steenrod ◽  
...  

Abstract. The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic oceans. In this paper we present and analyze a data set of 10 s (2 km) merged and gap-filled observations of the key reactive species driving the chemical budgets of O3 and CH4 (O3, CH4, CO, H2O, HCHO, H2O2, CH3OOH, C2H6, higher alkanes, alkenes, aromatics, NOx, HNO3, HNO4, peroxyacetyl nitrate, other organic nitrates), consisting of 146 494 distinct air parcels from ATom deployments 1 through 4. Six models calculated the O3 and CH4 photochemical tendencies from this modeling data stream for ATom 1. We find that 80 %–90 % of the total reactivity lies in the top 50 % of the parcels and 25 %–35 % in the top 10 %, supporting previous model-only studies that tropospheric chemistry is driven by a fraction of all the air. In other words, accurate simulation of the least reactive 50 % of the troposphere is unimportant for global budgets. Surprisingly, the probability densities of species and reactivities averaged on a model scale (100 km) differ only slightly from the 2 km ATom data, indicating that much of the heterogeneity in tropospheric chemistry can be captured with current global chemistry models. Comparing the ATom reactivities over the tropical oceans with climatological statistics from six global chemistry models, we find excellent agreement with the loss of O3 and CH4 but sharp disagreement with production of O3. The models sharply underestimate O3 production below 4 km in both Pacific and Atlantic basins, and this can be traced to lower NOx levels than observed. Attaching photochemical reactivities to measurements of chemical species allows for a richer, yet more constrained-to-what-matters, set of metrics for model evaluation.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1194
Author(s):  
Seung-Bu Park ◽  
Ji-Young Han

The convective parameterization scheme of the Korean Integrated Model (KIM) is tentatively modified to suppress grid-point storms in the Western Pacific Ocean. The KIM v3.2.11 suffers from the numerical problem that grid-point storms degrade forecasts in the tropical oceans and around the Korean Peninsula. Another convective parameterization scheme, the new Tiedtke scheme, is implemented in the KIM. The artificial storms are suppressed in the test version because the heating and drying tendencies of the new Tiedtke scheme are stronger than those of the default KIM Simplified Arakawa-Schubert (KSAS) scheme. Based on this comparison, the KSAS scheme is modified to strengthen its heating and drying tendencies by reducing the entrainment and detrainment rates. The modified KSAS scheme suppresses grid-point storms and thus decreases grid-scale precipitation in a summertime case simulation. Twenty 10-day forecasts with the default convection scheme (KSAS) and twenty forecasts with the modified scheme are conducted and compared with each other, confirming that the modified KSAS scheme successfully suppresses grid-point storms.


Author(s):  
Yunwei Yan ◽  
Lei Zhang ◽  
Xiangzhou Song ◽  
Guihua Wang ◽  
Changlin Chen

AbstractDiurnal variation in surface latent heat flux (LHF) and the effects of diurnal variations in LHF-related variables on the climatological LHF are examined using observations from the Global Tropical Moored Buoy Array. The estimated amplitude of the climatological diurnal LHF over the Indo-Pacific warm pool and the equatorial Pacific and Atlantic cold tongues is remarkable, with maximum values exceeding 20.0 W m−2. Diurnal variability of sea surface skin temperature (SSTskin) is the primary contributor to the diurnal LHF amplitude. Because the diurnal SSTskin amplitude has an inverse relationship with surface wind speed over the tropical oceans, an inverse spatial pattern between the diurnal LHF amplitude and surface wind speed results. Resolving diurnal variations in the SSTskin and wind improves the estimate of the climatological LHF by properly capturing the daytime SSTskin and daily mean wind speed, respectively. The diurnal SSTskin-associated contribution is large over the warm pool and equatorial cold tongues where low wind speeds tend to cause strong diurnal SSTskin warming, while the magnitude associated with the diurnal winds is large over the highly dynamic environment of the Inter-Tropical Convergence Zone. The total diurnal contribution is about 9.0 W m−2 on average over the buoy sites. There appears to be a power function (linear) relationship between the diurnal SSTskin-associated (wind-associated) contribution and surface mean wind speed (wind speed enhancement from diurnal variability). The total contribution from diurnal variability can be estimated accurately from high-frequency surface wind measurements using these relationships.


2021 ◽  
Author(s):  
Aravind Nair ◽  
K S S Sai Srujan ◽  
Sayali Kulkarni ◽  
Kshitij Alwadhi ◽  
Navya Jain ◽  
...  

<div><div><div><p>Tropical cyclones (TCs) are the most destructive weather systems that form over the tropical oceans, with 90 storms forming globally every year. The timely detection and tracking of TCs are important for advanced warning to the affected regions. As these storms form over the open oceans far from the continents, remote sensing plays a crucial role in detecting them. Here we present an automated TC detection from satellite images based on a novel deep learning technique. In this study, we propose a multi-staged deep learning framework for the detection of TCs, including, (i) a detector - Mask Region-Convolutional Neural Network (R-CNN), (ii) a wind speed filter, and (iii) a classifier - CNN. The hyperparameters of the entire pipeline is optimized to showcase the best performance using Bayesian optimization. Results indicate that the proposed approach yields high precision (97.10%), specificity (97.59%), and accuracy (86.55%) for test images.</p></div></div></div>


2021 ◽  
Author(s):  
Aravind Nair ◽  
K S S Sai Srujan ◽  
Sayali Kulkarni ◽  
Kshitij Alwadhi ◽  
Navya Jain ◽  
...  

<div><div><div><p>Tropical cyclones (TCs) are the most destructive weather systems that form over the tropical oceans, with 90 storms forming globally every year. The timely detection and tracking of TCs are important for advanced warning to the affected regions. As these storms form over the open oceans far from the continents, remote sensing plays a crucial role in detecting them. Here we present an automated TC detection from satellite images based on a novel deep learning technique. In this study, we propose a multi-staged deep learning framework for the detection of TCs, including, (i) a detector - Mask Region-Convolutional Neural Network (R-CNN), (ii) a wind speed filter, and (iii) a classifier - CNN. The hyperparameters of the entire pipeline is optimized to showcase the best performance using Bayesian optimization. Results indicate that the proposed approach yields high precision (97.10%), specificity (97.59%), and accuracy (86.55%) for test images.</p></div></div></div>


2021 ◽  
pp. 1-60
Author(s):  
Piyush Garg ◽  
Stephen W. Nesbitt ◽  
Timothy J. Lang ◽  
George Priftis

AbstractTropical convection regimes range from deep organized to shallow convective systems. Mesoscale processes such as cold pools within tropical convective systems can play a significant role in the evolution of convection over land and open ocean. Although cold pools are widely observed, their diurnal properties are not well understood over tropical oceans and land. The oceanic cold pool identification metric applied herein uses the gradient feature (GF) technique and is compared with diurnally-resolved buoy-identified thermal cold pools. This study provides a first-ever diurnal climatology of GF number, area, and attributed TRMM 3B42 precipitation using a space-borne scatterometer (RapidScat). Buoy data over the Pacific, Atlantic, and Indian Ocean have been used to validate and examine the RapidScat-identified diurnal cycle of GF number and precipitation. Buoy-observed cold pool duration, precipitation, temperature, and wind speed is analyzed to understand the in situ cold pool properties over tropical oceans. GF- and buoy-observed cold pool number and precipitation exhibits a similar bimodal diurnal variability with a morning and afternoon maxima, thus establishing confidence in using GF as a proxy to observe cold pools over tropical oceans. The morning peak is attributed to cold pools associated with deep moist convection while the afternoon peak is related to shallower clouds in relatively drier environments resulting in smaller cold pools over global tropical oceans.


Sign in / Sign up

Export Citation Format

Share Document