reanalysis data
Recently Published Documents


TOTAL DOCUMENTS

1879
(FIVE YEARS 899)

H-INDEX

67
(FIVE YEARS 11)

MAUSAM ◽  
2022 ◽  
Vol 73 (1) ◽  
pp. 151-160
Author(s):  
FALAHAL DALABEEH

. The climatology of the cold-point tropopause (CPT) and tropopause characteristics in a subtropical area like The Arabian Peninsula is examined using the radiosonde data of the CPT characteristics and NCEP Reanalysis data of the tropopause characteristics. The monthly mean data for January and July are analyzed for three stations, namely Medina, Tabuk and Dammam in Saudi Arabia. The trends of CPT and tropopause characteristics of pressure, height, temperature, temperature anomalies, relative humidity, wind speed and potential temperature are also analyzed.  The trends of these characteristics show that they experienced a sharp change during the 1990s and a significant change for the period from 2000 to 2016. For the whole period of study, the month of July, CPT and tropopause pressure decreased for about 5 hPa, whereas the height increased for more than 100 m. The temperature experienced a sudden drop during the beginning of the 1990s and a smooth decrease during the following years in January. Furthermore, a strong correlation is found between the CPT temperature and the Solar Cycle during the ‘90s period then it decreased sharply after this period.


2022 ◽  
Vol 14 (2) ◽  
pp. 362
Author(s):  
Amir Allahvirdi-Zadeh ◽  
Joseph Awange ◽  
Ahmed El-Mowafy ◽  
Tong Ding ◽  
Kan Wang

Global Navigation Satellite Systems’ radio occultation (GNSS-RO) provides the upper troposphere-lower stratosphere (UTLS) vertical atmospheric profiles that are complementing radiosonde and reanalysis data. Such data are employed in the numerical weather prediction (NWP) models used to forecast global weather as well as in climate change studies. Typically, GNSS-RO operates by remotely sensing the bending angles of an occulting GNSS signal measured by larger low Earth orbit (LEO) satellites. However, these satellites are faced with complexities in their design and costs. CubeSats, on the other hand, are emerging small and cheap satellites; the low prices of building them and the advancements in their components make them favorable for the GNSS-RO. In order to be compatible with GNSS-RO requirements, the clocks of the onboard receivers that are estimated through the precise orbit determination (POD) should have short-term stabilities. This is essential to correctly time tag the excess phase observations used in the derivation of the GNSS-RO UTLS atmospheric profiles. In this study, the stabilities of estimated clocks of a set of CubeSats launched for GNSS-RO in the Spire Global constellation are rigorously analysed and evaluated in comparison to the ultra-stable oscillators (USOs) onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2) satellites. Methods for improving their clock stabilities are proposed and tested. The results (i) show improvement of the estimated clocks at the level of several microseconds, which increases their short-term stabilities, (ii) indicate that the quality of the frequency oscillator plays a dominant role in CubeSats’ clock instabilities, and (iii) show that CubeSats’ derived UTLS (i.e., tropopause) atmospheric profiles are comparable to those of COSMIC-2 products and in situ radiosonde observations, which provided external validation products. Different comparisons confirm that CubeSats, even those with unstable onboard clocks, provide high-quality RO profiles, comparable to those of COSMIC-2. The proposed remedies in POD and the advancements of the COTS components, such as chip-scale atomic clocks and better onboard processing units, also present a brighter future for real-time applications that require precise orbits and stable clocks.


2022 ◽  
Vol 22 (1) ◽  
pp. 419-439
Author(s):  
Lixing Shen ◽  
Chuanfeng Zhao ◽  
Xingchuan Yang ◽  
Yikun Yang ◽  
Ping Zhou

Abstract. The 2019 Australian mega fires were unprecedented considering their intensity and consistency. There has been much research on the environmental and ecological effects of these mega fires, most of which focused on the effect of huge aerosol loadings and the ecological devastation. Sea land breeze (SLB) is a regional thermodynamic circulation closely related to coastal pollution dispersion, yet few have looked into how it is influenced by different types of aerosols transported from either nearby or remote areas. Mega fires provide an optimal scenario of large aerosol emissions. Near the coastal site of Brisbane Archerfield during January 2020, when mega fires were the strongest, reanalysis data from Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) showed that mega fires did release huge amounts of aerosols, making aerosol optical depth (AOD) of total aerosols, black carbon (BC) and organic carbon (OC) approximately 240 %, 425 % and 630 % of the averages in other non-fire years. Using 20 years' wind observations of hourly time resolution from a global observation network managed by the National Oceanic and Atmospheric Administration (NOAA), we found that the SLB day number during that month was only 4, accounting for 33.3 % of the multi-years' average. The land wind (LW) speed and sea wind (SW) speed also decreased by 22.3 % and 14.8 % compared with their averages respectively. Surprisingly, fire spot and fire radiative power (FRP) analysis showed that heating effects and aerosol emission of the nearby fire spots were not the main causes of the local SLB anomaly, while the remote transport of aerosols from the fire centre was mainly responsible for the decrease of SW, which was partially offset by the heating effect of nearby fire spots and the warming effect of long-range transported BC and CO2. The large-scale cooling effect of aerosols on sea surface temperature (SST) and the burst of BC contributed to the slump of LW. The remote transport of total aerosols was mainly caused by free diffusion, while the large-scale wind field played a secondary role at 500 m. The large-scale wind field played a more important role in aerosol transport at 3 km than at 500 m, especially for the gathered smoke, but free diffusion remained the major contributor. The decrease of SLB speed boosted the local accumulation of aerosols, thus making SLB speed decrease further, forming a positive feedback mechanism.


2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Alain Hauchecorne ◽  
Chantal Claud ◽  
Philippe Keckhut ◽  
Alexis Mariaccia

AbstractIn early spring the stratospheric zonal circulation reverses from westerly to easterly. The transition, called Stratospheric Final Warming (SFW), may be smooth and late, mainly controlled by the solar radiative heating of the polar region, or early and abrupt with rapid increase of polar temperature and deceleration of the zonal wind, forced by the planetary wave activity. Here we present a study, based on 71 years meteorological reanalysis data. Two composites of radiative and dynamical SFWs have been built. There is a very significant difference in the evolution during the year of polar temperature and 60°N zonal wind between the two composites. The state of the polar vortex on given month is anticorrelated with its state 2 to 3 months earlier. Early winter is anticorrelated with mid-winter and mid-winter with late winter/early spring. The summer stratosphere keeps a memory of its state in April–May after the SFW until late June.


Author(s):  
Erik Kusch ◽  
Richard Davy

Abstract Advances in climate science have rendered obsolete the gridded observation data widely used in downstream applications. Novel climate reanalysis products outperform legacy data products in accuracy, temporal resolution, and provision of uncertainty metrics. Consequently, there is an urgent need to develop a workflow through which to integrate these improved data into biological analyses. The ERA5 product family (ERA5 and ERA5-Land) are the latest and most advanced global reanalysis products created by the European Center for Medium-range Weather Forecasting (ECMWF). These data products offer up to 83 essential climate variables (ECVs) at hourly intervals for the time-period of 1981 to today with preliminary back-extensions being available for 1950-1981. Spatial resolutions range from 30x30km (ERA5) to 11x11km (ERA5-Land) and can be statistically downscaled to study-requirements at finer spatial resolutions. Kriging is one such method to interpolate data to finer resolutions and has the advantages that one can leverage additional covariate information and obtain the uncertainty associated with the downscaling. The KrigR R-package enables users to (1) download ERA5(-Land) climate reanalysis data for a user-specified region, and time-period, (2) aggregate these climate products to desired temporal resolutions and metrics, (3) acquire topographical co-variates, and (4) statistically downscale spatial data to a user-specified resolution using co-variate data via kriging. KrigR can execute all these tasks in a single function call, thus enabling the user to obtain any of 83 (ERA5) / 50 (ERA5-Land) climate variables at high spatial and temporal resolution with a single R-command. Additionally, KrigR contains functionality for computation of bioclimatic variables and aggregate metrics from the variables offered by ERA5(-Land). This R-package provides an easy-to-implement workflow for implementation of state-of-the-art climate data while avoiding issues of storage limitations at high temporal and spatial resolutions by providing data according to user-needs rather than in global data sets. Consequently, KrigR provides a toolbox to obtain a wide range of tailored climate data at unprecedented combinations of high temporal and spatial resolutions thus enabling the use of world-leading climate data through the R-interface and beyond.


2022 ◽  
pp. 0309524X2110693
Author(s):  
Sajeer Ahmad ◽  
Muhammad Abdullah ◽  
Ammara Kanwal ◽  
Zia ul Rehman Tahir ◽  
Usama Bin Saeed ◽  
...  

The growth rate of offshore wind is increasing due to technological advancement and reduction in cost. An approach using mast measured data at coastline and reanalysis data is proposed for offshore wind resource assessment, especially for developing countries. The evaluation of fifth generation European Reanalysis (ERA5) data was performed against measured data using statistical analysis. ERA5 data slightly underestimates wind speed and wind direction with percentage bias of less than 1%. Wind resource assessment of region in Exclusive Economic Zone (EEZ) of Pakistan was performed in terms of wind speed and Wind Power Density (WPD). The range of monthly mean wind speed and WPD in the region was 4.03–8.67 m/second and 73–515 W/m2 respectively. Most-probable wind speed and dominating wind direction on corners and center of the region were found using probability distributions and wind rose diagrams respectively. Most-probable wind speed ranges 4.41–7.64 m/second and dominating wind direction is southwest.


2022 ◽  
Author(s):  
Valerio Lembo ◽  
Federico Fabiano ◽  
Vera Melinda Galfi ◽  
Rune Graversen ◽  
Valerio Lucarini ◽  
...  

Abstract. The extratropical meridional energy transport in the atmosphere is fundamentally intermittent in nature, having extremes large enough to affect the net seasonal transport. Here, we investigate how these extreme transports are associated with the dynamics of the atmosphere at multiple scales, from planetary to synoptic. We use ERA5 reanalysis data to perform a wavenumber decomposition of meridional energy transport in the Northern Hemisphere mid-latitudes during winter and summer. We then relate extreme transport events to atmospheric circulation anomalies and dominant weather regimes, identified by clustering 500 hPa geopotential height fields. In general, planetary-scale waves determine the strength and meridional position of the synoptic-scale baroclinic activity with their phase and amplitude, but important differences emerge between seasons. During winter, large wavenumbers (k = 2 − 3) are key drivers of the meridional energy transport extremes, and planetary and synoptic-scale transport extremes virtually never co-occur. In summer, extremes are associated with higher wavenumbers (k = 4 − 6), identified as synoptic-scale motions. We link these waves and the transport extremes to recent results on exceptionally strong and persistent co-occurring summertime heat waves across the Northern Hemisphere mid-latitudes. We show that these events are typical, in terms of dominant regime patterns associated with extremely strong meridional energy transports.


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Kwang-Yul Kim

AbstractThe diurnal/seasonal structure of the boundary layer height (BLH) is investigated over East Asia by using the hourly synoptic monthly ERA5 reanalysis variables from 1979 to 2019. Sensible heat flux (SHF) is the major factor in the temporal and spatial variation of the BLH. Although BLH, in general, is positively correlated with SHF throughout the year, BLH-SHF relationship varies significantly based on the surface type, latitude and time of the year. Analysis also reveals that stability is an important parameter controlling the diurnal maximum BLH. The growth of BLH is strongly limited by the presence of a stable layer. On the other hand, BLH increases abruptly in the presence of a weakly stratified residual layer. In addition, regional warming tends to increase the BLH in the mid- to high-latitude continental area. In the low-latitude continental area, the sign of anomalous SHF varies seasonally and regionally. Stability plays only a minor role in the BLH change except over the Tibetan Plateau, where the increased stability at the top of boundary layer due to warming reduces BLH rather significantly.


2022 ◽  
Author(s):  
Noah A. Paoa-Kannegiesser ◽  
Charles H. Fletcher ◽  
Tiffany R. Anderson ◽  
Makena Coffman

Abstract Projecting sea level rise (SLR) impacts requires defining ocean surface variability as a source of uncertainty. We analyze data from a Regional Ocean Modeling System (ROMS) reanalysis for the region surrounding the main Hawaiian Islands to incorporate the ocean surface uncertainty in mapping SLR flood probabilities. By analyzing the ocean surface height component of the ROMS reanalysis, we create an ocean surface reference (ORS) as a proxy for MHHW. We model the NOAA Intermediate, Intermediate-high and High regional SLR scenarios for the years 2050 and 2100 at three field sites around Oʻahu; Waikīkī, Hauʻula, Haleʻiwa. We calculate a probability density function (PDF) by convolving the PDF of water level derived from the ROMS reanalysis data with the PDF of error associated with a digital elevation model of the study sites. The resulting joint-PDF of flood depth allows us to create two types of probability-based flood projections: (1) Maps illustrating varying flood depths for a given probability threshold and, (2) maps illustrating varying probability for a specific flood depth. We compare 80% probability flood projections using our ORS approach to projections using the TCARI grid, the standard NOAA method. We highlight the importance of uncertainty and user-defined probability in identifying pixels that function as tipping points distinguishing flooding styles.


Sign in / Sign up

Export Citation Format

Share Document