Processes governing the seasonal evolution of mixed layers in the Red Sea

Author(s):  
G. Krokos ◽  
I. Cerovečki ◽  
V. P. Papadopoulos ◽  
M. C. Hendershott ◽  
I. Hoteit
Ocean Science ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 563-573 ◽  
Author(s):  
Cheriyeri P. Abdulla ◽  
Mohammed A. Alsaafani ◽  
Turki M. Alraddadi ◽  
Alaa M. Albarakati

Abstract. For the first time, a monthly climatology of mixed layer depth (MLD) in the Red Sea has been derived based on temperature profiles. The general pattern of MLD variability is clearly visible in the Red Sea, with deep MLDs during winter and shallow MLDs during summer. Transitional MLDs have been found during the spring and fall. The northern end of the Red Sea experienced deeper mixing and a higher MLD associated with the winter cooling of the high-saline surface waters. Further, the region north of 19° N experienced deep mixed layers, regardless of the season. Wind stress plays a major role in the MLD variability of the southern Red Sea, while net heat flux and evaporation are the dominating factors in the central and northern Red Sea regions. Ocean eddies and Tokar Gap winds significantly alter the MLD structure in the Red Sea. The dynamics associated with the Tokar Gap winds leads to a difference of more than 20 m in the average MLD between the north and south of the Tokar axis.


2018 ◽  
Author(s):  
Cheriyeri P. Abdulla ◽  
Mohammed A. Alsaafani ◽  
Turki M. Alraddadi ◽  
Alaa M. Albarakati

Abstract. For the first time, a monthly climatology of mixed layer depth (MLD) in the Red Sea has been derived based on temperature profiles. The general pattern of MLD variability is clearly visible in the Red Sea, with deep MLDs during winter and shallow MLDs during summer. Transitional MLDs have been found during the spring and fall. The northern end of the Red Sea experienced deeper mixing and higher MLD, associated with the winter cooling of the high-saline surface waters. Further, the region north of 19° N experienced deep mixed layers, irrespective of the season. Wind stress plays a major role in the MLD variability of the southern Red Sea, while net heat flux and evaporation are the dominating factors in the central and northern Red Sea regions. Ocean eddies and Tokar gap winds significantly alter the MLD structure in the Red Sea. The dynamics associated with the Tokar gap winds lead to a difference of more than 20 m in the average MLD between the north and south of the Tokar axis.


1907 ◽  
Vol 64 (1644supp) ◽  
pp. 8-9
Author(s):  
Harold J. Shepstone
Keyword(s):  
Red Sea ◽  

Sign in / Sign up

Export Citation Format

Share Document