scholarly journals Lagrangian Data Assimilation and Parameter Estimation of an idealized Sea Ice Discrete Element Model

Author(s):  
Nan Chen ◽  
Shubin Fu ◽  
Georgy Manucharyan
2014 ◽  
Vol 33 (1) ◽  
pp. 56-63 ◽  
Author(s):  
Baohui Li ◽  
Hai Li ◽  
Yu Liu ◽  
Anliang Wang ◽  
Shunying Ji

2011 ◽  
Vol 268-270 ◽  
pp. 913-918
Author(s):  
Hai Li ◽  
Yu Liu ◽  
Xiang Jun Bi ◽  
Shun Ying Ji

The compressional strength of sea ice is a key parameter to determine the interaction between ice cover and offshore structure. In this study, the discrete element model (DEM) with particle bonding function is adopted to model the sea ice compressional strength. The bonding strength is set as a function of the ice temperature and ice salinity, and their influences on sea ice compressional strength are observed. The simulated results are compared well with the physical experimental data. With the improvement of this DEM, the ice load and ice-induced vibration of offshore structure can be simulated.


2021 ◽  
Author(s):  
Adrian K. Turner ◽  
Kara J. Peterson ◽  
Dan Bolintineanu

Abstract. A new sea ice dynamical core, the Discrete Element Model for Sea Ice (DEMSI), is under development for use in coupled Earth system models. DEMSI is based on the discrete element method, which models collections of ice floes as interacting Lagrangian particles. In basin-scale sea ice simulations the Lagrangian motion results in significant convergence and ridging, which requires periodic remapping of sea ice variables from a deformed particle configuration back to an undeformed initial distribution. At the resolution required for Earth system models we cannot resolve individual sea ice floes, so we adopt the sub-gridscale thickness distribution used in continuum sea ice models. This choice leads to a series of hierarchical tracers depending on ice fractional area or concentration that must be remapped consistently. The circular discrete elements employed in DEMSI help improve the computational efficiency at the cost of increased complexity in the effective element area definitions for sea ice cover that are required for the accurate enforcement of conservation. An additional challenge is the accurate remapping of element values along the ice edge, the location of which varies due to the Lagrangian motion of the particles. In this paper we describe a particle-to-particle remapping approach based on well-established geometric remapping ideas that enforces conservation, bounds-preservation, and compatibility between associated tracer quantities, while also robustly managing remapping at the ice edge. One element of the remapping algorithm is a novel optimization-based flux correction that enforces concentration bounds in the case of non-uniform motion. We demonstrate the accuracy and utility of the algorithm in a series of numerical test cases.


2012 ◽  
Vol 85 (1) ◽  
Author(s):  
Zhijie Xu ◽  
Alexandre M. Tartakovsky ◽  
Wenxiao Pan

Author(s):  
Alfredo Gay Neto ◽  
Peter Wriggers

AbstractWe present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as sand and railway ballast.


2014 ◽  
Vol 577 ◽  
pp. 108-111 ◽  
Author(s):  
Ying Qiu ◽  
Mei Lin Gu ◽  
Feng Guang Zhang ◽  
Zhi Wei

The discrete element method (DEM) is applied to glass micromachining in this study. By three standard tests the discrete element model is established to match the main mechanical properties of glass. Then, indentating, cutting, micro milling process are simulated. Results show that the vertical damage depth is prevented from reaching the final machined surface in cutting process. Tool rake angle is the most remarkable factor influencing on the chip deformation and cutting force. The final machined surface is determined by the minimum cutting thickness per edge. Different cutting thickness, cutter shape and spindle speed largely effect on the mechanism of glass.


Sign in / Sign up

Export Citation Format

Share Document