scholarly journals Discrete element model for general polyhedra

Author(s):  
Alfredo Gay Neto ◽  
Peter Wriggers

AbstractWe present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as sand and railway ballast.

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1331
Author(s):  
Luyu Wang ◽  
Mohamed Meguid ◽  
Hani S. Mitri

Ballast fouling is a major factor that contributes to the reduction of shear strength of railway ballast, which can further affect the stability of railway supporting structure. The major sources of ballast fouling include infiltration of foreign fines into the ballast material and ballast degradation induced by train movement on the supported tracks. In this paper, a discrete element model is developed and used to simulate the shear stress–strain response of fouled ballast assembly subjected to direct shear loading. A simplified computational approach is then proposed to model the induced ballast fouling and capture the mechanical response of the ballast at various levels of contamination. The approach is based on the assumption that fine particles comprising the fouling material will not only change the interparticle friction angle, but also the contact stiffness between the ballast particles. Therefore, both the interparticle friction coefficient and effective modulus are adjusted based on a fouled ballast model that is validated using experimental results. The effect of ballast degradation is also investigated by gradually changing the particle size distribution of the ballast assembly in the discrete element model to account for the increased range of particle sizes. Using the developed model, the effect of ballast degradation on the shear strength is then evaluated. Conclusions are made to highlight the suitability of these approximate approaches in efficiently modeling ballast assemblies under shear loading conditions.


Author(s):  
Christian Ergenzinger ◽  
Robert Seifried ◽  
Peter Eberhard

A discrete element approach to assess degradation processes in ballast beds is presented. Firstly, a discrete element model describing strength and failure of strong rock is introduced. For this purpose a granular solid is created by bonding of adjacent particles. A method to define angular ballast stones made from the granular solid is proposed. The strength of these stones is evaluated by compression between parallel platens. Comparing these results to published experimental data yields very good qualitative and reasonable quantitative agreement. Finally, the failure of aggregates of breakable stones is investigated by simulation of oedometric compression tests and indentation of a sleeper into a ballast bed.


2014 ◽  
Vol 577 ◽  
pp. 108-111 ◽  
Author(s):  
Ying Qiu ◽  
Mei Lin Gu ◽  
Feng Guang Zhang ◽  
Zhi Wei

The discrete element method (DEM) is applied to glass micromachining in this study. By three standard tests the discrete element model is established to match the main mechanical properties of glass. Then, indentating, cutting, micro milling process are simulated. Results show that the vertical damage depth is prevented from reaching the final machined surface in cutting process. Tool rake angle is the most remarkable factor influencing on the chip deformation and cutting force. The final machined surface is determined by the minimum cutting thickness per edge. Different cutting thickness, cutter shape and spindle speed largely effect on the mechanism of glass.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Stephen T. McClain ◽  
Jason M. Brown

The discrete-element model for flows over rough surfaces was recently modified to predict drag and heat transfer for flow over randomly rough surfaces. However, the current form of the discrete-element model requires a blockage fraction and a roughness-element diameter distribution as a function of height to predict the drag and heat transfer of flow over a randomly rough surface. The requirement for a roughness-element diameter distribution at each height from the reference elevation has hindered the usefulness of the discrete-element model and inhibited its incorporation into a computational fluid dynamics (CFD) solver. To incorporate the discrete-element model into a CFD solver and to enable the discrete-element model to become a more useful engineering tool, the randomly rough surface characterization must be simplified. Methods for determining characteristic diameters for drag and heat transfer using complete three-dimensional surface measurements are presented. Drag and heat transfer predictions made using the model simplifications are compared to predictions made using the complete surface characterization and to experimental measurements for two randomly rough surfaces. Methods to use statistical surface information, as opposed to the complete three-dimensional surface measurements, to evaluate the characteristic dimensions of the roughness are also explored.


2014 ◽  
Vol 11 (05) ◽  
pp. 1350102 ◽  
Author(s):  
WEI GAO ◽  
YUANQIANG TAN ◽  
MENGYAN ZANG

A 3D discrete element model (DEM model) named cubic arranged discrete element model is proposed. The model treats the interaction between two connective discrete elements as an equivalent "beam" element. The spring constants between two connective elements are obtained based on the equivalence of strain energy stored in a unit volume of elastic continuum. Following that, the discrete element model proposed and its algorithm are implemented into the in-house developed code. To test the accuracy of the DEM model and its algorithm, the vibration process of the block, a homogeneous plate and laminated plate under impact loading are simulated in elastic range. By comparing the results with that calculated by using LS-DYNA, it is found that they agree with each other very well. The accuracy of the DEM model and its algorithm proposed in this paper is proved.


Sign in / Sign up

Export Citation Format

Share Document