principle of virtual work
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 24)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 5 (7 (113)) ◽  
pp. 6-13
Author(s):  
Vitalii Myntiuk

A geometrically and physically nonlinear model of a membrane cylindrical shell, which has been built and tested, describes the behavior of a airbag made of fabric material. Based on the geometrically accurate relations of "strain-displacement", it has been shown that the equilibrium equations of the shell, written in terms of Biot stresses, together with boundary conditions acquire a natural physical meaning and are the consequences of the principle of virtual work. The physical properties of the shell were described by Fung’s hyper-elastic biological material because its behavior is similar to that of textiles. For comparison, simpler hyper-elastic non-compressible Varga and Neo-Hookean materials, the zero-, first-, and second-order materials were also considered. The shell was loaded with internal pressure and convergence of edges. The approximate solution was constructed by an spectral method; the exponential convergence and high accuracy of the equilibrium equations inherent in this method have been demonstrated. Since the error does not exceed 1 % when keeping ten terms in the approximations of displacement functions, the solution can be considered almost accurate. Similar calculations were performed using a finite element method implemented in ANSYS WB in order to verify the results. Differences in determining the displacements have been shown to not exceed 0.2 %, stresses – 4 %. The study result has established that the use of Fung, Varga, Neo-Hookean materials, as well as a zero-order material, lead to similar values of displacements and stresses, from which displacements of shells from the materials of the first and second orders significantly differ. This finding makes it possible, instead of the Fung material whose setting requires a significant amount of experimental data, to use simpler ones – a zero-order material and the Varga material


Author(s):  
Jan Sladek ◽  
Vladimir Sladek ◽  
Miroslav Repka ◽  
Ernian Pan

A gradient theory is applied to the mechanical constitutive equations for piezoelectric semiconductor nanostructures. This is achieved by considering the strain gradients in the constitutive equation with high-order stresses and electric displacements in advanced continuum model. The C1 continuous interpolations of displacements or a mixed formulation is required in the finite element method (FEM) due to the presence of the second-order derivative on the elastic displacements. A mixed FEM is then developed from the principle of virtual work. Numerical examples clearly show the significant effect of flexoelectricity on the induced electric potential and electric current in the piezoelectric semiconductor nanostructures.


2021 ◽  
pp. 20-28
Author(s):  
L. Sargsyan

В работе приведены основные уравнения плоской задачи градиентной теории упругости для прямоугольной области и устанавливается принцип возможных перемещений с соответствующем вариационном уравнением. Из вариационного уравнения теории упругости и для прямоугольной области все граничные условия. / The paper demonstrates the basic equations of the plane problem in the frames of the theory of gradient elasticity and establishes the principle of virtual work along with its variation equations. The basic balance equations of the plane problem of the theory of gradient elasticity and the boundary conditions for the rectangular plane are derived.


Author(s):  
Alfredo Gay Neto ◽  
Peter Wriggers

AbstractWe present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as sand and railway ballast.


2021 ◽  
pp. 1-14
Author(s):  
Nianfeng Wang ◽  
Bicheng Chen ◽  
Xiandong Ge ◽  
Xianmin Zhang ◽  
Wei Chen

Abstract Recently, soft pneumatic actuators (SPAs) have drawn increasing attention due to their ease of fabrication, high customizability and innately softness. Inspired by modular design, two kinds of SPAs including an axial elongation soft pneumatic actuator (aeSPA) and a radial expansion soft pneumatic actuator (reSPA) are proposed in this paper, followed by their modeling, fabrication, and application in locomotion robots. The relationships between pressure and displacement of these SPAs are deduced based on the Yeoh model and the principle of virtual work, which has a good agreement with experimental results. Five modular worm-like crawling robots are fabricated by assembling the aeSPAs and reSPAs in different morphology, and crawling tests are performed under different conditions to show the adaptivity of robots.


2021 ◽  
Vol 264 ◽  
pp. 02008
Author(s):  
Ruslan Khakimzyanov ◽  
Anvar Togaev ◽  
Aziz Rashidov

This article discusses the calculation of the strength of the frame structure of the universal chassis of the tractor trailer in the T-Flex software package and the comparative analysis of the results with experimental data and model data based on the principle of virtual work (possible movements).


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Bingyan Li ◽  
Yuxuan Liu ◽  
Rongqiang Liu ◽  
Hongwei Guo ◽  
Qiang Cong ◽  
...  

This paper proposes a double-level guyed membrane antenna for stiffness improvement of a large-scale tri-prism deployable mast using the collapsible tubular mast (CTM). Initially, the construction of the antenna and the modeling of the CTM boom are illustrated. Afterwards, the central mast with isosceles triangular cross section is mathematically equivalent to a continuum beam, in which the equations of motion and the constitutive relations are derived. Based on the equivalent central beam, the double-level guyed mast for the membrane antenna is modeled as a 2(3-SPS-S) mechanism, and then velocity Jacobian matrices and stiffness matrices of SPS branches are constructed. Additionally, the total stiffness matrix of the equivalent mechanism is derived with the principle of virtual work and then evaluated as an accurate approach. Finally, with the aim to improve the static stiffness of the double-level guyed mast, the numerical analysis using the Genetic Algorithm (GA) is carried out for optimizing the distribution of guys in terms of anchor positions and attachment heights.


Sign in / Sign up

Export Citation Format

Share Document