scholarly journals Instantaneous amplitude and shape of postrhinal theta oscillations differentially encode running speed.

2020 ◽  
Vol 134 (6) ◽  
pp. 516-528
Author(s):  
Megha Ghosh ◽  
Benjamin E. Shanahan ◽  
Sharon C. Furtak ◽  
George A. Mashour ◽  
Rebecca D. Burwell ◽  
...  
2020 ◽  
Author(s):  
Megha Ghosh ◽  
Benjamin E. Shanahan ◽  
Sharon C. Furtak ◽  
George A. Mashour ◽  
Rebecca D. Burwell ◽  
...  

ABSTRACTHippocampal theta oscillations have a temporally asymmetric waveform shape, but it is not known if this theta asymmetry extends to all other cortical regions involved in spatial navigation and memory. Here, using both established and improved cycle-by-cycle analysis methods, we show that theta waveforms in the postrhinal cortex are also temporally asymmetric. On average, the falling phase of postrhinal theta cycles lasts longer than the subsequent rising phase. There are, however, rapid changes in both the instantaneous amplitude and instantaneous temporal asymmetry of postrhinal theta cycles. These rapid changes in amplitude and asymmetry are very poorly correlated, indicative of a mechanistic disconnect between these theta cycle features. We show that the instantaneous amplitude and asymmetry of postrhinal theta cycles differentially encode running speed. Although theta amplitude continues to increase at the fastest running speeds, temporal asymmetry of the theta waveform shape plateaus after medium speeds. Our results suggest that the amplitude and waveform shape of individual postrhinal theta cycles may be governed by partially independent mechanisms and emphasize the importance of employing a single cycle approach to understanding the genesis and behavioral correlates of cortical theta rhythms.


1960 ◽  
Author(s):  
David Ehrenfreund ◽  
Pietro Badia
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document