instantaneous amplitude
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 17)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
pp. 4779-4790
Author(s):  
Marwa H. Shehab ◽  
Kamal K. Ali

     A seismic study was conducted to re-interpret the Qasab and Jawan Oil fields in northwestern Iraq, south of the city of Mosul, by reprocessing many seismic sections of a number of field surveys by using the Petrel software. Two reflectors, represented by the Hartha formation, deposited during the Cretan age, and the Euphrates formation, formed during the Tertiary age, were delineated to stabilize the structural picture of these fields. The stratigraphic study showed that the Qasab and Jawan fields represent areas of hydrocarbon accumulation. Seismic attribute analysis showed low values of instantaneous frequency in the areas of hydrocarbon accumulation. Instantaneous phase was used to determine the limits of the sequence, the nature of sedimentation, and the type of vanishing, i.e. onlap vs. toplap. Low instantaneous amplitude values were recorded, indicating hydrocarbon reservoirs in the studied area. Various other seismic stratigraphic features were studied , including the distribution mound, flat spot, and channels in the two formations, but they were discontinuous because of the tectonic effects. These activities explain reasonably the distribution of hydrocarbons in the studied area.


Author(s):  
Alessandro Longo ◽  
Stefano Bianchi ◽  
Guillermo Valdes ◽  
Nicolas Arnaud ◽  
Wolfango Plastino

Abstract Data acquired by the Virgo interferometer during the second part of the O3 scientific run, referred to as O3b, were analysed with the aim of characterising the onset and time evolution of scattered light noise in connection with the variability of microseismic noise in the environment surrounding the detector. The adaptive algorithm used, called pytvfemd, is suitable for the analysis of time series which are both nonlinear and nonstationary. It allowed to obtain the first oscillatory mode of the differential arm motion degree of freedom of the detector during days affected by scattered light noise. The mode’s envelope i.e., its instantaneous amplitude, is then correlated with the motion of the West end bench, a known source of scattered light during O3. The relative velocity between the West end test mass and the West end optical bench is used as a predictor of scattered light noise. Higher values of correlation are obtained in periods of higher seismic noise in the microseismic frequency band. This is also confirmed by the signal-to-noise ratio (SNR) of scattered light glitches from GravitySpy for the January-March 2020 period. Obtained results suggest that the adopted methodology is suited for scattered light noise characterisation and monitoring in gravitational wave interferometers.


2021 ◽  
Vol 15 ◽  
Author(s):  
Matthew D. Bachman ◽  
Madison N. Hunter ◽  
Scott A. Huettel ◽  
Marty G. Woldorff

Attention can be involuntarily biased toward reward-associated distractors (value-driven attentional capture, VDAC). Yet past work has primarily demonstrated this distraction phenomenon during a particular set of circumstances: transient attentional orienting to potentially relevant stimuli occurring in our visual environment. Consequently, it is not well-understood if reward-based attentional capture can occur under other circumstances, such as during sustained visuospatial attention. Using EEG, we investigated whether associating transient distractors with reward value would increase their distractibility and lead to greater decrements in concurrent sustained spatial attention directed elsewhere. Human participants learned to associate three differently colored, laterally presented squares with rewards of varying magnitude (zero, small, and large). These colored squares were then periodically reintroduced as distractors at the same lateral locations during a demanding sustained-attention rapid-serial-visual-presentation (RSVP) task at the midline. Behavioral and neural evidence indicated that participants had successfully learned and maintained the reward associations to the distractors. During the RSVP task, consistent with prior work, we found that the distractors generated dips in the instantaneous amplitude of the steady-state visual evoked potentials (SSVEPs) elicited by the midline RSVP stimuli, indicating that the distractors were indeed transiently disrupting sustained spatial attention. Contrary to our hypotheses, however, the magnitude of this dip did not differ by the magnitude of the distractor’s reward associations. These results indicate that while sustained spatial attention can be impaired by the introduction of distractors at another location, the main distraction process is resistant to the distractors’ reward associations, thus providing evidence of an important boundary condition to value-driven attentional capture.


2021 ◽  
pp. 147592172110135
Author(s):  
Asma Alsadat Mousavi ◽  
Chunwei Zhang ◽  
Sami F Masri ◽  
Gholamreza Gholipour

Signal processing is one of the essential components in vibration-based approaches and damage detection for structural health monitoring. Since signals in the real world are often nonlinear and non-stationary, especially in extended and complex structures, such as bridges, the Hilbert–Huang transform is used for damage assessment. In recent years, the empirical mode decomposition technique has been gradually used in structural health monitoring and damage detection. In this article, the application of complete ensemble empirical mode decomposition with adaptive noise technique is investigated to identify the presence, location, and severity of damage on a steel truss bridge model. The target is built at laboratory conditions and experimentally subjected to white noise excitations. By employing complete ensemble empirical mode decomposition with adaptive noise technique, four key features extracted from the intrinsic mode functions, including energy, instantaneous amplitude, unwrapped phase, and instantaneous frequency, are assessed to localization, quantification, and detection of damage both quantitatively and qualitatively. In addition, to further explore the sensitivity of the damage detection approach based on the complete ensemble empirical mode decomposition with adaptive noise technique method, several improved damage indices are proposed based on the combinations of two statistical time-history features, including kurtosis and entropy features with the energy and instantaneous amplitude features of the analyzed signal. The experimental results from the damage indices based on the extracted features demonstrate the robustness, superiority, and more sensitivity of the complete ensemble empirical mode decomposition with adaptive noise technique method in addressing the damage location, classifying the severity, and detecting the damage compared to empirical mode decomposition and ensemble empirical mode decomposition techniques.


2020 ◽  
pp. 147592172097699
Author(s):  
Isabel M Morris ◽  
Vivek Kumar ◽  
Branko Glisic

We present here a laboratory-based experimental protocol that seeks to establish and characterize the relationship between ground-penetrating radar attributes and the mechanical properties (density, porosity, and compressive strength) of typical industry concrete mixes. The experimental data consist of ground-penetrating radar attributes from 900 MHz radargrams that correspond to simultaneously measured physical properties of Portland cement concrete, alkali-activated concrete, and cement mortar. Appropriate regression models are trained and tested on this data set to predict each physical property from ground-penetrating radar attributes. From a small selection of individual attributes, including total phase and intensity, trained random forest regression models predict porosity ( R2 = 0.83 from the instantaneous amplitude), density ( R2 = 0.67 from the intensity attribute), and compressive strength ( R2 = 0.51 from instantaneous amplitude). These novel relationships between physical properties and ground-penetrating radar attributes indicate that material properties could be predicted from the attributes of ordinary ground-penetrating radar scans of concrete.


2020 ◽  
Vol 134 (6) ◽  
pp. 516-528
Author(s):  
Megha Ghosh ◽  
Benjamin E. Shanahan ◽  
Sharon C. Furtak ◽  
George A. Mashour ◽  
Rebecca D. Burwell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document