Location-coding account versus affordance-activation account in handle-to-hand correspondence effects: Evidence of Simon-like effects based on the coding of action direction.

2017 ◽  
Vol 43 (9) ◽  
pp. 1647-1666 ◽  
Author(s):  
Antonello Pellicano ◽  
Iring Koch ◽  
Ferdinand Binkofski
Cognition ◽  
2017 ◽  
Vol 169 ◽  
pp. 91-101 ◽  
Author(s):  
Robert W. Proctor ◽  
Mei-Ching Lien ◽  
Lane Thompson

2015 ◽  
pp. 725-735 ◽  
Author(s):  
Ehud Ahissar ◽  
Per M Knutsen
Keyword(s):  

2009 ◽  
Vol 62 (9) ◽  
pp. 1784-1804 ◽  
Author(s):  
Barbara Treccani ◽  
Roberto Cubelli ◽  
Sergio Della Sala ◽  
Carlo Umiltà

The present study aimed at investigating the processing stage underlying stimulus–stimulus (S–S) congruency effects by examining the relation of a particular type of congruency effect (i.e., the flanker effect) with a stimulus–response (S–R) spatial correspondence effect (i.e., the Simon effect). Experiment 1 used a unilateral flanker task in which the flanker also acted as a Simon-like accessory stimulus. Results showed a significant S–S Congruency × S–R Correspondence interaction: An advantage for flanker–response spatially corresponding trials was observed in target–flanker congruent conditions, whereas, in incongruent conditions, there was a noncorresponding trials’ advantage. The analysis of the temporal trend of the correspondence effects ruled out a temporal-overlap account for the observed interaction. Moreover, results of Experiment 2, in which the flanker did not belong to the target set, demonstrated that this interaction cannot be attributed to perceptual grouping of the target–flanker pairs and referential coding of the target with respect to the flanker in the congruent and incongruent conditions, respectively. Taken together, these findings are consistent with a response selection account of congruency effects: Both the position and the task-related attribute of the flanker would activate the associated responses. In noncorresponding-congruent trials and corresponding-incongruent trials, this would cause a conflict at the response selection stage.


2019 ◽  
Vol 30 (3) ◽  
pp. 1779-1796 ◽  
Author(s):  
Mikiko Kadohisa ◽  
Kei Watanabe ◽  
Makoto Kusunoki ◽  
Mark J Buckley ◽  
John Duncan

Abstract Complex cognition is dynamic, with each stage of a task requiring new cognitive processes appropriately linked to stimulus or other content. To investigate control over successive task stages, we recorded neural activity in lateral frontal and parietal cortex as monkeys carried out a complex object selection task, with each trial separated into phases of visual selection and learning from feedback. To study capacity limitation, complexity was manipulated by varying the number of object targets to be learned in each problem. Different task phases were associated with quasi-independent patterns of activity and information coding, with no suggestion of sustained activity linked to a current target. Object and location coding were largely parallel in frontal and inferior parietal cortex, though frontal cortex showed somewhat stronger object representation at feedback, and more sustained location coding at choice. At both feedback and choice, coding precision diminished as task complexity increased, matching a decline in performance. We suggest that, across successive task steps, there is radical but capacity-limited reorganization of frontoparietal activity, selecting different cognitive operations linked to their current targets.


Sign in / Sign up

Export Citation Format

Share Document