Response properties of dipteran giant visual interneurones involved in control of optomotor behaviour

Nature ◽  
1978 ◽  
Vol 271 (5643) ◽  
pp. 358-360 ◽  
Author(s):  
HENDRIK E. ECKERT
Author(s):  
Daniel Lambrecht ◽  
Eric Berquist

We present a first principles approach for decomposing molecular linear response properties into orthogonal (additive) plus non-orthogonal/cooperative contributions. This approach enables one to 1) identify the contributions of molecular building blocks like functional groups or monomer units to a given response property and 2) quantify cooperativity between these contributions. In analogy to the self consistent field method for molecular interactions, SCF(MI), we term our approach LR(MI). The theory, implementation and pilot data are described in detail in the manuscript and supporting information.


2012 ◽  
Vol 27 (9) ◽  
pp. 928-932
Author(s):  
Mao-Lin ZHANG ◽  
Zhan-Heng YUAN ◽  
Jian-Ping SONG ◽  
Cheng ZHENG

1992 ◽  
Vol 170 (3) ◽  
pp. 267-274 ◽  
Author(s):  
John de Souza ◽  
Horst Hertel ◽  
Dora Fix Ventura ◽  
Randolf Menzel
Keyword(s):  

2002 ◽  
Vol 445 (1) ◽  
pp. 78-96 ◽  
Author(s):  
Justin S. Cetas ◽  
Robin O. Price ◽  
David S. Velenovsky ◽  
Jennifer J. Crowe ◽  
Donal G. Sinex ◽  
...  

2015 ◽  
Vol 113 (2) ◽  
pp. 657-668 ◽  
Author(s):  
Rafael Levi ◽  
Otar Akanyeti ◽  
Aleksander Ballo ◽  
James C. Liao

The ability of fishes to detect water flow with the neuromasts of their lateral line system depends on the physiology of afferent neurons as well as the hydrodynamic environment. Using larval zebrafish ( Danio rerio), we measured the basic response properties of primary afferent neurons to mechanical deflections of individual superficial neuromasts. We used two types of stimulation protocols. First, we used sine wave stimulation to characterize the response properties of the afferent neurons. The average frequency-response curve was flat across stimulation frequencies between 0 and 100 Hz, matching the filtering properties of a displacement detector. Spike rate increased asymptotically with frequency, and phase locking was maximal between 10 and 60 Hz. Second, we used pulse train stimulation to analyze the maximum spike rate capabilities. We found that afferent neurons could generate up to 80 spikes/s and could follow a pulse train stimulation rate of up to 40 pulses/s in a reliable and precise manner. Both sine wave and pulse stimulation protocols indicate that an afferent neuron can maintain their evoked activity for longer durations at low stimulation frequencies than at high frequencies. We found one type of afferent neuron based on spontaneous activity patterns and discovered a correlation between the level of spontaneous and evoked activity. Overall, our results establish the baseline response properties of lateral line primary afferent neurons in larval zebrafish, which is a crucial step in understanding how vertebrate mechanoreceptive systems sense and subsequently process information from the environment.


Sign in / Sign up

Export Citation Format

Share Document