hair cell
Recently Published Documents


TOTAL DOCUMENTS

2846
(FIVE YEARS 444)

H-INDEX

109
(FIVE YEARS 11)

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 180
Author(s):  
Maria Morell ◽  
Laura Rojas ◽  
Martin Haulena ◽  
Björn Busse ◽  
Ursula Siebert ◽  
...  

Congenital hearing loss is recognized in humans and other terrestrial species. However, there is a lack of information on its prevalence or pathophysiology in pinnipeds. It is important to have baseline knowledge on marine mammal malformations in the inner ear, to differentiate between congenital and acquired abnormalities, which may be caused by infectious pathogens, age, or anthropogenic interactions, such as noise exposure. Ultrastructural evaluation of the cochlea of a neonate harbor seal (Phoca vitulina) by scanning electron microscopy revealed bilateral loss of inner hair cells with intact outer hair cells. The selective inner hair cell loss was more severe in the basal turn, where high-frequency sounds are encoded. The loss of inner hair cells started around 40% away from the apex or tip of the spiral, reaching a maximum loss of 84.6% of hair cells at 80–85% of the length from the apex. Potential etiologies and consequences are discussed. This is believed to be the first case report of selective inner hair cell loss in a marine mammal neonate, likely congenital.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Carmen Butan ◽  
Qiang Song ◽  
Jun-Ping Bai ◽  
Winston J. T. Tan ◽  
Dhasakumar Navaratnam ◽  
...  

AbstractThe mammalian outer hair cell (OHC) protein prestin (Slc26a5) differs from other Slc26 family members due to its unique piezoelectric-like property that drives OHC electromotility, the putative mechanism for cochlear amplification. Here, we use cryo-electron microscopy to determine prestin’s structure at 3.6 Å resolution. Prestin is structurally similar to the anion transporter Slc26a9. It is captured in an inward-open state which may reflect prestin’s contracted state. Two well-separated transmembrane (TM) domains and two cytoplasmic sulfate transporter and anti-sigma factor antagonist (STAS) domains form a swapped dimer. The transmembrane domains consist of 14 transmembrane segments organized in two 7+7 inverted repeats, an architecture first observed in the bacterial symporter UraA. Mutation of prestin’s chloride binding site removes salicylate competition with anions while retaining the prestin characteristic displacement currents (Nonlinear Capacitance), undermining the extrinsic voltage sensor hypothesis for prestin function.


2022 ◽  
Author(s):  
Joseph Santos-Sacchi

Outer hair cell (OHC) nonlinear membrane capacitance (NLC) represents voltage-dependent sensor charge movements within prestin (SLC26a5) that drive OHC electromotility. Dielectric loss, a shift in charge movement phase from purely capacitive to resistive, is likely indicative of prestin interaction with the viscous lipid bilayer and has been suggested to correspond to prestin power output. The frequency response of NLC in OHC membrane patches has been measured with phase tracking and complex capacitance methodologies. While the latter approach can directly determine the presence of dielectric loss by assessing charge movement both in and out of phase with driving voltage, the former has been suggested to fail in this regard. Here we show that standard phase tracking in the presence of dielectric loss does indeed register this loss. Such estimates of NLC correspond to the absolute magnitude of complex NLC, indicating that total charge movement regardless of phase is assessed, thereby validating past and present measures of NLC frequency response that limits its effectiveness at high frequencies. This observation has important implications for understanding the role of prestin in cochlear amplification.


Author(s):  
Yue Li ◽  
Shan Zeng ◽  
Fengjie Zhou ◽  
Huiqun Jie ◽  
Dongzhen Yu ◽  
...  
Keyword(s):  

Author(s):  
Saman Hussain ◽  
Roberto Aponte-Rivera ◽  
Rana M. Barghout ◽  
Josef G. Trapani ◽  
Katie S. Kindt

2022 ◽  
Author(s):  
V. Bleu Knight ◽  
Amanda R. Luna ◽  
Elba Serrano

Background: Ototoxic chemicals can impair the senses of hearing and balance in mammals through irreversible damage to the mechanosensory bundles of inner ear hair cells. Fish and amphibians are useful models for investigating ototoxicity because their inner ear hair cells, like those of mammals, are susceptible to damage by ototoxins. Moreover, amphibian mechanosensation is augmented by a lateral line organ on the body surface that comprises external mechanosensory hair cells. The lateral line hair cells are arranged in clusters (neuromasts) and are structurally and functionally similar to inner ear hair cells, but are more accessible for experimental manipulation. Herein, we implemented neuromasts of the amphibian (Xenopus) lateral line as an organ system for evaluating the effects of ototoxic chemicals, such as antibiotics, on mechanosensory hair cell bundles. Methods: We examined the ultrastructure of larval Xenopus laevis neuromasts with scanning electron microscopy (SEM) after larvae were continuously exposed to ototoxic aminoglycoside antibiotics at sub-lethal concentrations (gentamicin; streptomycin; neomycin) for 72 hours. Results: SEM images demonstrated that 72 hours of exposure to antibiotic concentrations greater than 25 μM reduced the hair cell bundle number in lateral line neuromasts. Conclusion: Therapeutic drug studies will benefit from the incorporation of bioassay strategies that evaluate ototoxicity across multiple species including genera of amphibian origin such as Xenopus. Our outcomes support the use of the Xenopus lateral line for identification of potential ototoxic chemicals and suggest that Xenopus neuromast hair cell bundles can withstand antibiotic exposure. The Xenopus bioassay presented here can be incorporated into drug discovery methodology as a high-resolution phenotypic screen for ototoxic effects.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ethan Ozment ◽  
Arianna N Tamvacakis ◽  
Jianhong Zhou ◽  
Pablo Yamild Rosiles-Loeza ◽  
Esteban Elías Escobar-Hernandez ◽  
...  

Although specialized mechanosensory cells are found across animal phylogeny, early evolutionary histories of mechanoreceptor development remain enigmatic. Cnidaria (e.g. sea anemones and jellyfishes) is the sister group to well-studied Bilateria (e.g. flies and vertebrates), and has two mechanosensory cell types - a lineage-specific sensory-effector known as the cnidocyte, and a classical mechanosensory neuron referred to as the hair cell. While developmental genetics of cnidocytes is increasingly understood, genes essential for cnidarian hair cell development are unknown. Here we show that the class IV POU homeodomain transcription factor (POU-IV) - an indispensable regulator of mechanosensory cell differentiation in Bilateria and cnidocyte differentiation in Cnidaria - controls hair cell development in the sea anemone cnidarian Nematostella vectensis. N. vectensis POU-IV is postmitotically expressed in tentacular hair cells, and is necessary for development of the apical mechanosensory apparatus, but not of neurites, in hair cells. Moreover, it binds to deeply conserved DNA recognition elements, and turns on a unique set of effector genes - including the transmembrane-receptor-encoding gene polycystin 1 - specifically in hair cells. Our results suggest that POU-IV directs differentiation of cnidarian hair cells and cnidocytes via distinct gene regulatory mechanisms, and support an evolutionarily ancient role for POU-IV in defining the mature state of mechanosensory neurons.


Medicine ◽  
2021 ◽  
Vol 100 (51) ◽  
pp. e28262
Author(s):  
Hong-li Zhao ◽  
Hong-hua Cui ◽  
Li-fang Jin ◽  
Meng Zhao ◽  
Wei-zhang Shen
Keyword(s):  

2021 ◽  
Vol 15 ◽  
Author(s):  
Pengcheng Xu ◽  
Longhao Wang ◽  
Hu Peng ◽  
Huihui Liu ◽  
Hongchao Liu ◽  
...  

Mutations in a number of genes encoding mitochondrial aminoacyl-tRNA synthetases lead to non-syndromic and/or syndromic sensorineural hearing loss in humans, while their cellular and physiological pathology in cochlea has rarely been investigated in vivo. In this study, we showed that histidyl-tRNA synthetase HARS2, whose deficiency is associated with Perrault syndrome 2 (PRLTS2), is robustly expressed in postnatal mouse cochlea including the outer and inner hair cells. Targeted knockout of Hars2 in mouse hair cells resulted in delayed onset (P30), rapidly progressive hearing loss similar to the PRLTS2 hearing phenotype. Significant hair cell loss was observed starting from P45 following elevated reactive oxygen species (ROS) level and activated mitochondrial apoptotic pathway. Despite of normal ribbon synapse formation, whole-cell patch clamp of the inner hair cells revealed reduced calcium influx and compromised sustained synaptic exocytosis prior to the hair cell loss at P30, consistent with the decreased supra-threshold wave I amplitudes of the auditory brainstem response. Starting from P14, increasing proportion of morphologically abnormal mitochondria was observed by transmission electron microscope, exhibiting swelling, deformation, loss of cristae and emergence of large intrinsic vacuoles that are associated with mitochondrial dysfunction. Though the mitochondrial abnormalities are more prominent in inner hair cells, it is the outer hair cells suffering more severe cell loss. Taken together, our results suggest that conditional knockout of Hars2 in mouse cochlear hair cells leads to accumulating mitochondrial dysfunction and ROS stress, triggers progressive hearing loss highlighted by hair cell synaptopathy and apoptosis, and is differentially perceived by inner and outer hair cells.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 873
Author(s):  
Fengjiao Chen ◽  
Ying Yang ◽  
Jianling Chen ◽  
Zihua Tang ◽  
Qian Peng ◽  
...  

The Notch signaling pathway plays an important role in otic neurogenesis by regulating the differentiation of inner ear hair cells and supporting cells. Notch-regulated differentiation is required for the regeneration of hair cells in the inner ear. The temporal expression pattern of Notch ligands and receptors during in vitro hair cell-like cell differentiation from human embryonic stem cells (hESCs) was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Subsequently, pAJ-U6-shRNA-CMV-Puro/GFP recombinant lentiviral vectors encoding short hairpin RNAs were used to silence JAG-1, JAG-2, and DLL-1, according to the temporal expression pattern of Notch ligands. Then, the effect of each ligand on the in vitro differentiation of hair cells was examined by RT-PCR, immunofluorescence, and scanning electron microscopy (SEM). The results showed that the individual deletion of JAG-2 or DLL-1 had no significant effect on the differentiation of hair cell-like cells. However, the simultaneous inhibition of both DLL-1 and JAG-2 increased the number of hair cell-like cells and decreased the number of supporting cells. JAG-2 and DLL-1 may have a synergistic role in in vitro hair cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document