linear response
Recently Published Documents


TOTAL DOCUMENTS

2639
(FIVE YEARS 427)

H-INDEX

86
(FIVE YEARS 9)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 131
Author(s):  
Natalia Ruiz-Pino ◽  
Antonio Prados

We present a detailed analytical investigation of the optimal control of uniformly heated granular gases in the linear regime. The intensity of the stochastic driving is therefore assumed to be bounded between two values that are close, which limits the possible values of the granular temperature to a correspondingly small interval. Specifically, we are interested in minimising the connection time between the non-equilibrium steady states (NESSs) for two different values of the granular temperature by controlling the time dependence of the driving intensity. The closeness of the initial and target NESSs make it possible to linearise the evolution equations and rigorously—from a mathematical point of view—prove that the optimal controls are of bang-bang type, with only one switching in the first Sonine approximation. We also look into the dependence of the optimal connection time on the bounds of the driving intensity. Moreover, the limits of validity of the linear regime are investigated.


2022 ◽  
Vol 12 (2) ◽  
pp. 726
Author(s):  
Tiago Paixão ◽  
Ana Sofia Nunes ◽  
Jörg Bierlich ◽  
Jens Kobelke ◽  
Marta S. Ferreira

An optical fiber tip sensor based on a Fabry–Perot interferometer is proposed for the detection of ethanol in the gas phase. The sensor is fabricated by fusion splicing one end of the suspended core fiber to a single mode fiber, whereas the other end is kept open to enable the interaction between the light propagating in the suspended core and the ethanol gas molecules. The sensor was tested with different percentages of ethanol, exhibiting a linear response between 0 and 100 wt.%, with a sensitivity of 3.9 pm/wt.%. The proposed sensor, with a length of a few hundred micrometers, can be an alternative solution for the detection of gaseous ethanol in foods or beverages, such as wines and distilled drinks.


2022 ◽  
Vol 9 ◽  
Author(s):  
Chunguo Cui ◽  
Lina Song ◽  
Chao Li ◽  
Tiantian Lin ◽  
Kaiyao Shi

An as-synthesized Eu(III) complex, denoted as Eu(N-DPNQ)(TTD)3, was prepared and characterized, and the antenna mechanism between these ligands and central metal emitter was studied. Here DPNQ means 10-ethyl-10H-indolo [2′,3':5,6]pyrazino[2,3-f][1,10]phenanthroline and TTD is 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione. We find that Eu(N-DPNQ)(TTD)3 emission intensity dependents on oxygen concentration, and O2-sensing skill of Eu(N-DPNQ)(TTD)3 in polymer composite nanofibers of poly (vinylpyrrolidone) (PVP) prepared by electrospinning is investigated. Results reveal that the emission quenching of Eu(N-DPNQ)(TTD)3 is caused by the ground state (triplet) oxygen quenching on antenna ligands triplet state. The Eu(N-DPNQ)(TTD)3 doped composite nanofiber with a loading level of 6 wt% exhibits the best result with sensitivity of 2.43 and response time of 10 s, along with linear response.


2021 ◽  
Vol 7 (52) ◽  
Author(s):  
Min Cai ◽  
Zhongdong Jiao ◽  
Shuang Nie ◽  
Chengjun Wang ◽  
Jun Zou ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 35
Author(s):  
Nur Afifah Ahmad Nazri ◽  
Nur Hidayah Azeman ◽  
Mohd Hafiz Abu Bakar ◽  
Nadhratun Naiim Mobarak ◽  
Yunhan Luo ◽  
...  

This paper demonstrates carbon quantum dots (CQDs) with triangular silver nanoparticles (AgNPs) as the sensing materials of localized surface plasmon resonance (LSPR) sensors for chlorophyll detection. The CQDs and AgNPs were prepared by a one-step hydrothermal process and a direct chemical reduction process, respectively. FTIR analysis shows that a CQD consists of NH2, OH, and COOH functional groups. The appearance of C=O and NH2 at 399.5 eV and 529.6 eV in XPS analysis indicates that functional groups are available for adsorption sites for chlorophyll interaction. A AgNP–CQD composite was coated on the glass slide surface using (3-aminopropyl) triethoxysilane (APTES) as a coupling agent and acted as the active sensing layer for chlorophyll detection. In LSPR sensing, the linear response detection for AgNP–CQD demonstrates R2 = 0.9581 and a sensitivity of 0.80 nm ppm−1, with a detection limit of 4.71 ppm ranging from 0.2 to 10.0 ppm. Meanwhile, a AgNP shows a linear response of R2 = 0.1541 and a sensitivity of 0.25 nm ppm−1, with the detection limit of 52.76 ppm upon exposure to chlorophyll. Based on these results, the AgNP–CQD composite shows a better linearity response and a higher sensitivity than bare AgNPs when exposed to chlorophyll, highlighting the potential of AgNP–CQD as a sensing material in this study.


2021 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Sung-Tae Kim ◽  
Ji-Seon Yoo ◽  
Min-Woo Lee ◽  
Ji-Won Jung ◽  
Jae-Hyung Jang

Near-infrared (NIR) photodetectors have interesting roles in optical fiber communications and biomedical applications. Conventional NIR photodetectors have been realized using InGaAs and Ge, of which the cut-off wavelengths exceed 1500 nm. Si-based photodetectors exhibit limited external quantum efficiency at wavelengths longer than 1000 nm. By synthesizing a CuInSe2 compound on a glass substrate, photodetectors that can detect optical wavelengths longer than 1100 nm have been realized in this study. The bandgap energies of the CuInSe2 thin films were tuned by varying the Cu/In ratio from 1.02 to 0.87. The longest cut-off wavelength (1309 nm) was obtained from a CuInSe2 thin film having a Cu/In ratio of 0.87. The responsivity of the photodiode was measured under the illumination of a 1064 nm laser light. The photo responses exhibited linear response up to 2.33 mW optical illumination and a responsivity of 0.60 A/W at −0.4 V.


Chemosensors ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Aleksandra Kalinowska ◽  
Magdalena Wicik ◽  
Patrycja Matusiak ◽  
Patrycja Ciosek-Skibińska

Differential sensing techniques are becoming nowadays an attractive alternative to classical selective recognition methods due to the “fingerprinting” possibility allowing identifying various analytes without the need to fabricate highly selective binding recognition sites. This work shows for the first time that surfactant-based ion-sensitive microspheres as optodes in the microscale can be designed as cross-sensitive materials; thus, they are perfect candidates as sensing elements for differential sensing. Four types of the newly developed chemosensory microspheres—anion- and cation-selective, sensitive toward amine- and hydroxyl moiety—exhibited a wide range of linear response (two to five orders of magnitude) in absorbance and/or fluorescence mode, great time stability (at least 2 months), as well as good fabrication repeatability. The array of four types of chemosensitive microspheres was capable of perfect pattern-based identification of eight neurotransmitters: dopamine, epinephrine, norepinephrine, γ-aminobutyric acid (GABA), acetylcholine, histamine, taurine, and phenylethylamine. Moreover, it allowed the quantification of neurotransmitters, also in mixtures. Its selectivity toward neurotransmitters was studied using α- and β-amino acids (Ala, Asp, Pro, Tyr, taurine) in simulated blood plasma solution. It was revealed that the chemosensory optode set could recognize subtle differences in the chemical structure based on the differential interaction of microspheres with various moieties present in the molecule. The presented method is simple, versatile, and convenient, and it could be adopted to various quantitative and qualitative analytical tasks due to the simple adjusting of microspheres components and measurement conditions.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 272
Author(s):  
Amin Fatoni ◽  
Aziz Wijonarko ◽  
Mekar Dwi Anggraeni ◽  
Dadan Hermawan ◽  
Hartiwi Diastuti ◽  
...  

Glucose biosensors based on porous material of alginate cryogel has been developed, and the cryogel provides a large surface area for enzyme immobilization. The alginate cryogel has been supplemented with NiFe2O4 nanoparticles to improve the electron transfer for electrochemical detection. The fabrication parameters and operational conditions for the biosensor have also been optimized. The results showed that the optimum addition of NiFe2O4 nanoparticles to the alginate solution was 0.03 g/mL. The optimum operational conditions for the electrochemical detection were a cyclic voltammetry scan rate of 0.11 V/s, buffer pH of 7.0, and buffer concentration of 150 mM. The fabricated alginate NiFe2O4 nanoparticles cryogel-based glucose biosensor showed a linear response for glucose determination with a regression line of y = 18.18x + 455.28 and R² = 0.98. Furthermore, the calculated detection limit was 0.32 mM and the limit of quantification was 1.06 mM.


Sign in / Sign up

Export Citation Format

Share Document