Black smokers, massive sulphides and vent biota at the Mid-Atlantic Ridge

Nature ◽  
1986 ◽  
Vol 321 (6065) ◽  
pp. 33-37 ◽  
Author(s):  
P. A. Rona ◽  
G. Klinkhammer ◽  
T. A. Nelsen ◽  
J. H. Trefry ◽  
H. Elderfield
2019 ◽  
Vol 107 ◽  
pp. 903-925 ◽  
Author(s):  
Bramley J. Murton ◽  
Berit Lehrmann ◽  
Adeline M. Dutrieux ◽  
Sofia Martins ◽  
Alba Gil de la Iglesia ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 294 ◽  
Author(s):  
Anna Firstova ◽  
Tamara Stepanova ◽  
Anna Sukhanova ◽  
Georgy Cherkashov ◽  
Irina Poroshina

The Semyenov-2 hydrothermal field located at 13°31′N of the Mid-Atlantic Ridge (MAR) is associated with an oceanic core complex (OCC) and hosted by peridotites and basalts with minor amounts of gabbro and plagiogranites. Seafloor massive sulphides (SMS) are represented by chimneys with zonality, massive sulphides without zonality and sulphide breccia cemented by opal and aragonite. The mean value of Au (20.6 ppm) and Te (40 ppm) is much higher than average for the MAR SMS deposits (3.2 ppm and 8.0 ppm, respectively). Generally, these high concentrations reflect the presence of a wide diversity of Au and Te minerals associated with major mineral paragenesis: primary native gold, melonite (NiTe2) and tellurobismuthite (Bi2Te3) are related to high-temperature chalcopyrite (~350 °C); electrum (AuAg)1, hessite (Ag2Te) and altaite (PbTe) are related to medium- and low-temperature Zn-sulphide and opal assemblages (260–230 °C). Calaverite (AuTe2) and Te-rich “fahlore” Cu12(Sb,As,Te)4S13 are texturally related to the chalcopyrite-bornite-covellite. Enrichment of Au in sulphide breccia with opal and aragonite cement is driven by the re-deposition and the process of hydrothermal reworking of sulphide. The low-temperature fluid mobilizes gold from primary sulphide, along with Au and Te minerals. As a result, the secondary gold re-precipitate in cement of sulphide breccia. An additional contribution of Au enrichment is the presence of aragonite in the Cu-Zn breccia where the maximal Au content (188 ppm) is reached.


Eos ◽  
1985 ◽  
Vol 66 (40) ◽  
pp. 682 ◽  
Author(s):  
Peter A. Rona

1993 ◽  
Author(s):  
Jerald W. Caruthers ◽  
J. R. Fricke ◽  
Ralph A. Stephen

2001 ◽  
Vol 2 (3) ◽  
pp. 269-278
Author(s):  
S. A. Silantiev ◽  
L. K. Levskiy ◽  
M. M. Arakelyants ◽  
V. A. Lebedev ◽  
A. Bugo ◽  
...  

2016 ◽  
Author(s):  
Ross P. Meyer ◽  
◽  
Joe H. Haxel ◽  
Robert P. Dziak ◽  
Deborah K. Smith

2021 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
Liudmila Demina ◽  
Irina Gablina ◽  
Olga Dara ◽  
Dmitry Budko ◽  
Nina Gorkova ◽  
...  

We examined the distribution of Fe, Mn, Cu, Zn, and Pb in one core of metalliferous, and one core of non-mineralized (background) carbonate sediments (located 69 km northwards), from the Pobeda hydrothermal field. Mechanisms of metal accumulation in sediments (12 samples) were evaluated based on sequential extraction of geochemical fractions, including mobile (exchangeable complex, authigenic Fe-Mn hydroxides, and sulfides), and lithogenic (fixed in crystalline lattices) forms. Maps of element distribution in sediment components were obtained using a scanning electron microscope equipped with an energy-dispersive spectrometry detector. In metalliferous sediments, according to X-ray diffraction data, the main Fe mineral phase was goethite FeOOH (37–44% on a carbonate-free basis). The contents of Fe and Mn reached 31.6 and 0.18%, respectively, whereas concentrations of Cu, Zn and Pb were 0.98, 0.36, and 0.059%. The coefficient of metal enrichment relative to background values varied from 16 to 125 times. The exception was Mn, for which no increased accumulation was recorded. Essential mass of Fe (up to 70% of total content) was represented by the residual fraction composed of crystallized goethite, aluminosilicates, the minerals derived from bedrock destruction processes. Among geochemically mobile fractions, 90–97% of total Fe was found in the form of authigenic oxyhydroxides. The same fraction was the predominant host for Mn in both metalliferous and background sediments (55–85%). A total of 40–96 % of Cd, Cu, Zn, and Pb were associated with these Fe and Mn fractions. The sulfide fraction amounted to roughly 10% of each metal. In metalliferous sediment core, the maximum concentrations of metals and their geochemically mobile fractions were recorded in deeper core intercepts, an observation that might be attributed to influence of hydrothermal diffused fluids. Our data suggested that metals are mostly accumulated in carbonate sediments in their contact zone with the underlying serpentinized basalts.


Sign in / Sign up

Export Citation Format

Share Document