mid atlantic ridge
Recently Published Documents


TOTAL DOCUMENTS

1801
(FIVE YEARS 217)

H-INDEX

113
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Henri Drake ◽  
Xiaozhou Ruan ◽  
Raffaele Ferrari ◽  
Andreas Thurnherr ◽  
Kelly Ogden ◽  
...  

The abyssal overturning circulation is thought to be primarily driven by small-scale turbulent mixing. Diagnosed watermass transformations are dominated by rough topography "hotspots", where the bottom-enhancement of mixing causes the diffusive buoyancy flux to diverge, driving widespread downwelling in the interior—only to be overwhelmed by an even stronger upwelling in a thin Bottom Boundary Layer (BBL). These watermass transformations are significantly underestimated by one-dimensional sloping boundary layer solutions, suggesting the importance of three-dimensional physics. Here, we use a hierarchy of models to generalize this one-dimensional boundary layer approach to three-dimensional eddying flows over realistically rough topography. When applied to the Mid-Atlantic Ridge in the Brazil Basin, the idealized simulation results are roughly consistent with available observations. Integral buoyancy budgets isolate the physical processes that contribute to realistically strong BBL upwelling. The downwards diffusion of buoyancy is primarily balanced by upwelling along the canyon flanks and the surrounding abyssal hills. These flows are strengthened by the restratifying effects of submesoscale baroclinic eddies on the canyon flanks and by the blocking of along-ridge thermal wind within the canyon. Major topographic sills block along-thalweg flows from restratifying the canyon trough, resulting in the continual erosion of the trough's stratification. We propose simple modifications to the one-dimensional boundary layer model which approximate each of these three-dimensional effects. These results provide \textit{local} dynamical insights into mixing-driven abyssal overturning, but a complete theory will also require the non-local coupling to the basin-scale circulation.


Author(s):  
P Methou ◽  
I Hernández-Ávila ◽  
C Cathalot ◽  
MA Cambon-Bonavita ◽  
F Pradillon

PalZ ◽  
2021 ◽  
Author(s):  
Luis Somoza ◽  
José Luis Rueda ◽  
Francisco J. González ◽  
Blanca Rincón-Tomás ◽  
Teresa Medialdea ◽  
...  

AbstractExtensive beds of the deep-sea mussel Bathymodiolus mauritanicus (currently also known as Gigantidas mauritanicus) linked to active cold seeps related to fissure-like activity on Al Gacel mud volcano, Gulf of Cádiz, were filmed and sampled for the first time during the oceanographic expedition SUBVENT-2 aboard R/V Sarmiento de Gamboa. Al Gacel mud volcano is one of up to 80 fluid venting submarine structures (mud volcanoes and mud volcano/diapir complexes) identified in the Gulf of Cádiz as result of explosive venting of hydrocarbon-enriched fluids sourced from deep seated reservoirs. This mud volcano is a cone-shaped edifice, 107 m high, 944 m in diameter constituted by mud breccias and, partially covered by pavements of seep carbonates. Extensive beds of this deep-sea mussel were detected at the northern flank at 810–815 m water depth associated with bacterial mats around intermittent buoyant vertical bubble methane plumes. High methane concentrations were measured in the water column above living mussel beds. Other chemosymbiotic species (Siboglinum sp., Solemya elarraichensis, Isorropodon sp., Thyasira vulcolutre and Lucinoma asapheus) were also found in different parts of Al Gacel mud volcano. Al Gacel mud volcano may currently represent one of the most active mud volcanoes in the Gulf of Cádiz, delivering significant amounts of thermogenic hydrocarbon fluids which contribute to foster the extensive chemosynthesis-based communities detected. This finding is of paramount importance for linking extremophile bivalve populations along the North Atlantic, including cold seeps of the Gulf of México, hydrothermal vents of the Mid-Atlantic Ridge and now, detailed documented at the Gulf of Cádiz.


2021 ◽  
Author(s):  
Jie Chen ◽  
Wayne Crawford ◽  
Mathilde Cannat

Abstract Successive flip-flop detachment faults in a nearly-amagmatic region of the ultraslow-spreading Southwest Indian Ridge (SWIR) at 64°30'E accommodate ~100% of plate divergence, with mostly ultramafic seafloor. As magma is the main heat carrier to the oceanic lithosphere, the nearly-amagmatic SWIR 64°30'E is expected to have a very thick lithosphere. Here, our microseismicity data shows a 15-km thick seismogenic lithosphere, actually thinner than the more magmatic SWIR Dragon Flag detachment with the same spreading rate. This challenges current models of how spreading rate and melt supply control the thermal regime of mid-ocean ridges. Microearthquakes with normal focal mechanisms are colocated with seismically imaged damage zones of the detachment and reveal hanging-wall normal faulting, which is not seen at more magmatic detachments at the SWIR or the Mid-Atlantic Ridge. We also document a two-day seismic swarm, interpret as caused by an upward-migrating melt intrusion in the detachment footwall (6-11 km), triggering a sequence of shallower (~1.5 km) tectonic earthquakes in the detachment fault plane. This points to a possible link between sparse magmatism and tectonic failure at melt-poor ultraslow ridges.


2021 ◽  
pp. 106713
Author(s):  
A.A. Tomilenko ◽  
T.A. Bul'bak ◽  
T.Yu. Timina ◽  
E.O. Shaparenko ◽  
V.A. Simonov ◽  
...  

2021 ◽  
pp. 104630
Author(s):  
Kaijun Liu ◽  
Fei Huang ◽  
Shang Gao ◽  
Zhibin Zhang ◽  
Yaqun Ren ◽  
...  

2021 ◽  
Author(s):  
Konstantinos Leptokaropoulos ◽  
Nicholas Harmon ◽  
Stephen Hicks ◽  
Catherine Rychert ◽  
David Schlaphorst ◽  
...  

2021 ◽  
Author(s):  
Telmo Morato ◽  
Carlos Dominguez‐Carrió ◽  
Christian Mohn ◽  
Oscar Ocaña Vicente ◽  
Manuela Ramos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document