metalliferous sediments
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 7)

H-INDEX

26
(FIVE YEARS 1)

2021 ◽  
Vol 82 (3) ◽  
pp. 43-45
Author(s):  
Silvia Chavdarova ◽  
Milen Stavrev ◽  
Atanas Hikov ◽  
Georgi Granchovski ◽  
Stoyan Georgiev ◽  
...  

The growing demand on mineral resources stimulated our interest on manganese- and iron-bearing occurrences as a potential source of Mn, Cu, Ni, Co, Mo, REY, etc. Here we focus on the mineralization of the Toplika ore occurrence, which is located in the central part of the Srednogorie Zone, Bulgaria. We present preliminary data on its field relationships, mineralogy and geochemistry and discuss the possible hydrothermal origin of the metalliferous sediments that should be further studies as source of critical elements.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 591
Author(s):  
Liudmila Demina ◽  
Irina Gablina ◽  
Dmitry Budko ◽  
Olga Dara ◽  
Aleksandra Solomatina ◽  
...  

In this study, to better understand the influence of hydrothermal processes on ore metal accumulation in bottom sediments, we examined distribution of Fe, Mn, Cu, Zn, As, and Pb in core of metalliferous sediments from the Pobeda hydrothermal cluster, and in core of non-mineralized (background) carbonate sediments (located 69 km northwards). Mechanisms of Fe, Mn, Cu, and Zn accumulation in sediments (12 samples) were evaluated based on sequential extraction of geochemical fractions, including a conditional mobile (F-1, exchangeable complex; F-2, authigenic Fe-Mn oxyhydroxides and associated metals; F-3, metals bound to organic matter/sulfides), and residual (F-4), fixed in crystalline lattices ones. The element contents were determined by the XRF and AAS methods, total carbon (TC) and total organic carbon (TOC) were determined using a Shimadzu TOC-L-CPN. Mineral composition and maps of element distribution in sediment components were obtained using the XRD and SEM-micro-X-ray spectrometry methods, respectively. In metalliferous sediments, according to our data, the major Fe mineral phase was goethite FeOOH (37–44% on a carbonate-free basis, cfb). In the metalliferous core, average contents (cfb), of Fe and Mn were 32.1% and 0.29%, whereas those of Cu, Zn, Pb, and As, were 0.74%, 0.27%, 0.03%, and 0.02%, respectively. Metalliferous sediments are enriched in Fe, Cu, Zn, Pb, and As, relatively to background ones. The exception was Mn, for which no increased accumulation in metalliferous core was recorded. Essential mass of Fe (up to 70% of total content) was represented by the residual fraction composed of crystallized goethite, aluminosilicates, the minerals derived from bedrock destruction processes mineral debris. Among geochemically mobile fractions, to 80% Fe of the (F-1 + F-2 + F-3) sum was determined in the form of F-2, authigenic oxyhydroxides. The same fraction was a predominant host for Mn in both metalliferous and background sediments (to 85%). With these Fe and Mn fractions, a major portion of Cu, Zn, and Pb was associated, while a less their amount was found in sulfide/organic fraction. In the metalliferous sediment core, maximal concentrations of metals and their geochemically mobile fractions were recorded in the deeper core sediment layers, an observation that might be attributed to influence of hydrothermal diffused fluids. Our data suggested that ore metals are mostly accumulated in sediment cores in their contact zone with the underlying serpentinized peridotites.


2021 ◽  
pp. 106517
Author(s):  
Katherine Kuksa ◽  
Artem Bich ◽  
Georgy Cherkashov ◽  
Anna Firstova ◽  
Vladislav Kuznetsov ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
Liudmila Demina ◽  
Irina Gablina ◽  
Olga Dara ◽  
Dmitry Budko ◽  
Nina Gorkova ◽  
...  

We examined the distribution of Fe, Mn, Cu, Zn, and Pb in one core of metalliferous, and one core of non-mineralized (background) carbonate sediments (located 69 km northwards), from the Pobeda hydrothermal field. Mechanisms of metal accumulation in sediments (12 samples) were evaluated based on sequential extraction of geochemical fractions, including mobile (exchangeable complex, authigenic Fe-Mn hydroxides, and sulfides), and lithogenic (fixed in crystalline lattices) forms. Maps of element distribution in sediment components were obtained using a scanning electron microscope equipped with an energy-dispersive spectrometry detector. In metalliferous sediments, according to X-ray diffraction data, the main Fe mineral phase was goethite FeOOH (37–44% on a carbonate-free basis). The contents of Fe and Mn reached 31.6 and 0.18%, respectively, whereas concentrations of Cu, Zn and Pb were 0.98, 0.36, and 0.059%. The coefficient of metal enrichment relative to background values varied from 16 to 125 times. The exception was Mn, for which no increased accumulation was recorded. Essential mass of Fe (up to 70% of total content) was represented by the residual fraction composed of crystallized goethite, aluminosilicates, the minerals derived from bedrock destruction processes. Among geochemically mobile fractions, 90–97% of total Fe was found in the form of authigenic oxyhydroxides. The same fraction was the predominant host for Mn in both metalliferous and background sediments (55–85%). A total of 40–96 % of Cd, Cu, Zn, and Pb were associated with these Fe and Mn fractions. The sulfide fraction amounted to roughly 10% of each metal. In metalliferous sediment core, the maximum concentrations of metals and their geochemically mobile fractions were recorded in deeper core intercepts, an observation that might be attributed to influence of hydrothermal diffused fluids. Our data suggested that metals are mostly accumulated in carbonate sediments in their contact zone with the underlying serpentinized basalts.


Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 26 ◽  
Author(s):  
Samuel Olatunde Popoola ◽  
Xiqiu Han ◽  
Yejian Wang ◽  
Zhongyan Qiu ◽  
Ying Ye ◽  
...  

In this paper, we conduct a comparative study on the mineralogy and geochemistry of metalliferous sediment collected near the active hydrothermal site (Wocan-1) and inactive hydrothermal site (Wocan-2) from Wocan Hydrothermal Field, on the Carlsberg Ridge (CR), northwest Indian Ocean. We aim to understand the spatial variations in the primary and post-depositional conditions and the intensity of hydrothermal circulations in the Wocan hydrothermal systems. Sediment samples were collected from six stations which includes TVG-07, TVG-08 (Wocan-1), TVG-05, TVG-10 (Wocan-2), TVG-12 and TVG-13 (ridge flanks). The mineralogical investigations show that sediment samples from Wocan-1 and Wocan-2 are composed of chalcopyrite, pyrite, sphalerite, barite, gypsum, amorphous silica, altered volcanic glass, Fe-oxides, and hydroxides. The ridge flank sediments are dominated by biogenic calcite and foraminifera assemblages. The bulk sediment samples of Wocan-1 have an elevated Fe/Mn ratio (up to ~1545), with lower U contents (<7.4 ppm) and U/Fe ratio (<~1.8 × 10−5). The sulfide separates (chalcopyrite, pyrite, and sphalerite) are enriched in Se, Co, As, Sb, and Pb. The calculated sphalerite precipitation temperature (Sph.PT) yields ~278 °C. The sulfur isotope (δ34S) analysis returned a light value of 3.0–3.6‰. The bulk sediment samples of Wocan-2 have a lower Fe/Mn ratio (<~523), with high U contents (up to 19.6 ppm) and U/Fe ratio (up to ~6.2 × 10−5). The sulfide separates are enriched in Zn, Cu, Tl, and Sn. The calculated Sph.PT is ~233 °C. The δ34S returned significant values of 4.1–4.3‰ and 6.4–8.7‰ in stations TVG-10 and TVG-05, respectively. The geochemical signatures (e.g., Fe/Mn and U/Fe ratio, mineral chemistry of sulfides separates, and S-isotopes and Sph.PT) suggest that sediment samples from Wocan-1 are located near intermediate–high temperature hydrothermal discharge environments. Additionally, relatively low δ34S values exhibit a lower proportion (less than 20%) of seawater-derived components. The geochemical signatures suggest that sediment samples from Wocan-2 has undergone moderate–extensive oxidation and secondary alterations by seawater in a low–intermediate temperature hydrothermal environments. Additionally, the significant δ34S values of station TVG-05 exhibit a higher estimated proportion (up to 41%) of seawater-derived components. Our results showed pervasive hydrothermal contributions into station TVG-08 relative to TVG-07, it further showed the increased process of seafloor weathering at TVG-05 relative to TVG-10.


2018 ◽  
Vol 37 (9) ◽  
pp. 67-81 ◽  
Author(s):  
Kunbo Rong ◽  
Zhigang Zeng ◽  
Xuebo Yin ◽  
Shuai Chen ◽  
Xiaoyuan Wang ◽  
...  

2018 ◽  
Vol 118 ◽  
pp. 106-121 ◽  
Author(s):  
Pierre Josso ◽  
Steve Roberts ◽  
Damon A.H. Teagle ◽  
Olivier Pourret ◽  
Richard Herrington ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document