Self-tolerance eliminates T cells specific for Mls-modified products of the major histocompatibility complex

Nature ◽  
1988 ◽  
Vol 332 (6159) ◽  
pp. 35-40 ◽  
Author(s):  
John W. Kappler ◽  
Uwe Staerz ◽  
Janice White ◽  
Philippa C. Marrack
1990 ◽  
Vol 172 (5) ◽  
pp. 1341-1346 ◽  
Author(s):  
G Benichou ◽  
P A Takizawa ◽  
P T Ho ◽  
C C Killion ◽  
C A Olson ◽  
...  

Mechanisms involved in self-antigen processing and presentation are crucial in understanding the induction of self-tolerance in the thymus. We examined the immunogenicity of determinants from major histocompatibility complex (MHC) molecules that are expressed in the thymus and have tested peptides derived from the polymorphic regions of class I and class II molecules. We found that two peptides corresponding to NH2 termini of the class II alpha and beta chains (Ak alpha 1-18 and Ak beta 1-16) could bind to self-Ak molecules with high affinity and, surprisingly, were immunogenic in that they could elicit strong proliferative T cell responses in B10.A mice (Ak, Ek). Neonatal injection of peptide Ak beta 1-16 resulted in complete unresponsiveness to this peptide at 8 wk of age showing that these T cells were susceptible to tolerance induction. We have also tested certain class I MHC peptides and showed that some can interact efficiently with class II MHC peptides to induce an autoreactive T cell proliferative response. Among these class I peptides is one (Dd 61-85) that has the capacity to bind to self-Ia without being immunogenic, and therefore represents an MHC determinant that had induced thymic self-tolerance. We conclude that some self-MHC molecules can be processed into peptides that can be presented in the context of intact class II molecules at the surface of antigen-presenting cells. Autoreactive T cells recognizing optimally processed self-peptide/MHC complexes are eliminated during development, whereas other potentially autoreactive T cells escape clonal inactivation or deletion. Incomplete tolerance to self-antigens enriches the T cell repertoire despite the fact that such T cells may eventually become involved in autoimmune disease.


1981 ◽  
Vol 153 (6) ◽  
pp. 1660-1665 ◽  
Author(s):  
D Bellgrau ◽  
D Smilek ◽  
D B Wilson

The immunogenicity of cell surface markers associated with specific anti-major histocompatibility complex (MHC) alloreactivity of rat peripheral T lymphocyte subpopulations has been demonstrated in the past by the ability of such cell populations to induce a profound and specific resistance to systemic graft-vs.-host (GVH) disease in adult rats. Our studies demonstrate that these specificity-associated anti-MHC parental strain T cell markers are also tolerogenic; if small numbers of parental strain T cells are administered to newborn F1 rats, they result in the specific inability to induce GVH resistance later on in adult life. Moreover, unlike normal animals, these F1 rats are extremely sensitive to systemic GVH disease caused by T cells from the original donor parental strain.


1983 ◽  
Vol 158 (4) ◽  
pp. 1077-1091 ◽  
Author(s):  
P Marrack ◽  
R Endres ◽  
R Shimonkevitz ◽  
A Zlotnik ◽  
D Dialynas ◽  
...  

We have examined the role of the murine homologue of Leu-3 T4, L3T4, in recognition of antigen in association with products of the major histocompatibility complex (Ag/MHC) by murine T cell hybridomas. A series of ovalbumin (OVA)/I-Ad-specific T cell hybridomas were ranked in their sensitivity to Ag/I by measuring their ability to respond to low doses of OVA, or their sensitivity to inhibition by anti-I-Ad antibodies. T cell hybridomas with low apparent avidity for OVA/I-Ad, i.e. that did not respond well to low concentrations of OVA and were easily inhibited by anti-I-Ad, were also easily inhibited by anti-L3T4 antibodies. The reverse was true for T cell hybridomas with apparent high avidity for Ag/MHC. We found that the presence of low doses of anti-L3T4 antibodies caused T cell hybridomas to respond less well to low doses of Ag, and to be more easily inhibited by anti-I-Ad antibodies. These results suggested that the role of the L3T4 molecule is to increase the overall avidity of the reaction between T cells and Ag-presenting cells. In support of this idea was the discovery of several L3T4- subclones of one of our L3T4+ T cell hybridomas, D0.11.10. The L3T4- subclones had the same amount of receptor for OVA/I-Ad as their L3T4+ parent, as detected by an anti-receptor monoclonal antibody. The L3T4- subclones, however, responded less well to low doses of OVA, and were more easily inhibited by anti-I-Ad antibodies than their L3T4/ parent. These results showed that the L3T4 molecule was not required for surface expression of, or functional activity of, the T cell receptor for Ag/MHC. The L3T4 molecule did, however, increase the sensitivity with which the T cell reacted with Ag/MHC on Ag-presenting cells.


2000 ◽  
Vol 191 (5) ◽  
pp. 805-812 ◽  
Author(s):  
Reinhard Obst ◽  
Nikolai Netuschil ◽  
Karsten Klopfer ◽  
Stefan Stevanović ◽  
Hans-Georg Rammensee

By analyzing T cell responses against foreign major histocompatibility complex (MHC) molecules loaded with peptide libraries and defined self- and viral peptides, we demonstrate a profound influence of self-MHC molecules on the repertoire of alloreactive T cells: the closer the foreign MHC molecule is related to the T cell's MHC, the higher is the proportion of peptide-specific, alloreactive (“allorestricted”) T cells versus T cells recognizing the foreign MHC molecule without regard to the peptide in the groove. Thus, the peptide repertoire of alloreactive T cells must be influenced by self-MHC molecules during positive or negative thymic selection or peripheral survival, much like the repertoire of the self-restricted T cells. In consequence, allorestricted, peptide-specific T cells (that are of interest for clinical applications) are easier to obtain if T cells and target cells express related MHC molecules.


1992 ◽  
Vol 176 (1) ◽  
pp. 275-280 ◽  
Author(s):  
M A Blackman ◽  
F E Lund ◽  
S Surman ◽  
R B Corley ◽  
D L Woodland

It has been established that at least some V beta 17+ T cells interact with an endogenous superantigen encoded by the murine retrovirus, Mtv-9. To analyze the role of major histocompatibility complex (MHC) class II molecules in presenting the Mtv-9 encoded superantigen, vSAG-9 to V beta 17+ hybridomas, a panel of nine hybridomas was tested for their ability to respond to A20/2J (H-2d) and LBK (H-2a) cells which had been transfected with the vSAG-9 gene. Whereas some of the hybridomas recognized vSAG-9 exclusively in the context of H-2a, other hybridomas recognized vSAG-9 exclusively in the context of H-2d or in the context of both H-2d and H-2a. These results suggest that: (a) the class II MHC molecule plays a direct role in the recognition of retroviral superantigen by T cells, rather than serving simply as a platform for presentation; and, (b) it is likely that components of the TCR other than V beta are involved in the vSAG-9/TCR/class II interaction.


Sign in / Sign up

Export Citation Format

Share Document