induced tolerance
Recently Published Documents


TOTAL DOCUMENTS

635
(FIVE YEARS 73)

H-INDEX

56
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Leire Jauregi ◽  
Maddi Artamendi ◽  
Lur Epelde ◽  
Fernando Blanco ◽  
Carlos Garbisu

Abstract The use of manure as a fertilizer is a common agricultural practice that can improve soil physicochemical and biological properties. However, antibiotics and their metabolites are often present, leading to the adaptation of soil bacterial communities to their presence. The aim of this study was to assess the effects of the extensively used, broad-spectrum antibiotic oxytetracycline on soil microbial community adaptation using a pollution-induced community tolerance assay. Manure-amended soil was spiked with oxytetracycline (0, 2, 20, 60, 150, and 500 mg kg−1) three times every ten days in the selection phase. The detection phase was conducted in Biolog EcoPlates with a second oxytetracycline exposure (0, 5, 20, 40, 60, and 100 mg L−1). All treatments demonstrated decreased metabolic activity after exposure to ≥ 5 mg L−1 oxytetracycline during the detection phase. Meanwhile, a significant increase in tolerance was observed following exposure to ≥ 20 mg oxytetracycline per kg soil during the selection phase. Therefore, the pollution-induced community tolerance approach with Biolog EcoPlates was a useful system for the detection of antibiotic selection pressures on soil bacterial communities. It is important to properly manage animal waste before their application to the soil to reduce the occurrence of antibiotic-resistance in the environment.


2021 ◽  
Author(s):  
Elizabeth VK Ledger ◽  
Stéphane Mesnage ◽  
Andrew M Edwards

Staphylococcus aureus is a frequent cause of bloodstream infections. Treatment can be challenging, even when isolates appear to be drug susceptible, with high rates of persistent and relapsing infection. This is particularly the case with infections caused by methicillin resistant S. aureus (MRSA) strains, which are resistant to frontline antibiotics. To understand how the host environment influences treatment outcomes in MRSA infections, we studied the impact of human serum on staphylococcal susceptibility to daptomycin, an antibiotic of last resort. This revealed that serum triggered a very high degree of tolerance to daptomycin, as well as several other classes of antibiotics and antimicrobial peptides, including gentamicin, nitrofurantoin, vancomycin, nisin and gramicidin. Serum-induced daptomycin tolerance was due to two independent mechanisms. Firstly, the host defence peptide LL-37 present in serum induced tolerance by triggering the staphylococcal GraRS two component system. This led to increased cell wall accumulation that reduced access of daptomycin to its membrane target. Secondly, GraRS-independent changes to the membrane resulted in increased cardiolipin abundance that also contributed to daptomycin tolerance. When both mechanisms were blocked, serum exposed S. aureus cells were as susceptible to daptomycin as bacteria growing in laboratory media. These data demonstrate that host factors can significantly modulate antibiotic susceptibility via diverse mechanisms, which may in turn contribute to treatment failure. The inhibition of serum-induced cell wall accumulation by fosfomycin reduced tolerance, suggesting that this antibiotic may form a useful combination therapy with daptomycin.


2021 ◽  
Vol 12 ◽  
Author(s):  
Benjamin J. Swartzwelter ◽  
Sara Michelini ◽  
Tobias Frauenlob ◽  
Francesco Barbero ◽  
Alessandro Verde ◽  
...  

Innate immune memory, the ability of innate cells to react in a more protective way to secondary challenges, is induced by exposure to infectious and other exogeous and endogenous agents. Engineered nanoparticles are particulate exogenous agents that, as such, could trigger an inflammatory reaction in monocytes and macrophages and could therefore be also able to induce innate memory. Here, we have evaluated the capacity of engineered gold nanoparticles (AuNPs) to induce a memory response or to modulate the memory responses induced by microbial agents. Microbial agents used were in soluble vs. particulate form (MDP and the gram-positive bacteria Staphylococcus aureus; β-glucan and the β-glucan-producing fungi C. albicans), and as whole microrganisms that were either killed (S. aureus, C. albicans) or viable (the gram-negative bacteria Helicobacter pylori). The memory response was assessed in vitro, by exposing human primary monocytes from 2-7 individual donors to microbial agents with or without AuNPs (primary response), then resting them for 6 days to allow return to baseline, and eventually challenging them with LPS (secondary memory response). Primary and memory responses were tested as production of the innate/inflammatory cytokine TNFα and other inflammatory and anti-inflammatory factors. While inactive on the response induced by soluble microbial stimuli (muramyl dipeptide -MDP-, β-glucan), AuNPs partially reduced the primary response induced by whole microorganisms. AuNPs were also unable to directly induce a memory response but could modulate stimulus-induced memory in a circumscribed fashion, limited to some agents and some cytokines. Thus, the MDP-induced tolerance in terms of TNFα production was further exacerbated by co-priming with AuNPs, resulting in a less inflammatory memory response. Conversely, the H. pylori-induced tolerance was downregulated by AuNPs only relative to the anti-inflammatory cytokine IL-10, which would lead to an overall more inflammatory memory response. These effects of AuNPs may depend on a differential interaction/association between the reactive particle surfaces and the microbial components and agents, which may lead to a change in the exposure profiles. As a general observation, however, the donor-to-donor variability in memory response profiles and reactivity to AuNPs was substantial, suggesting that innate memory depends on the individual history of exposures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hisanori Mayumi

The bone marrow transplantation (BMT) between haplo-identical combinations (haploBMT) could cause unacceptable bone marrow graft rejection and graft-versus-host disease (GVHD). To cross such barriers, Johns Hopkins platform consisting of haploBMT followed by post-transplantation (PT) cyclophosphamide (Cy) has been used. Although the central mechanism of the Johns Hopkins regimen is Cy-induced tolerance with bone marrow cells (BMC) followed by Cy on days 3 and 4, the mechanisms of Cy-induced tolerance may not be well understood. Here, I review our studies in pursuing skin-tolerance from minor histocompatibility (H) antigen disparity to xenogeneic antigen disparity through fully allogeneic antigen disparity. To overcome fully allogeneic antigen barriers or xenogeneic barriers for skin grafting, pretreatment of the recipients with monoclonal antibodies (mAb) against T cells before cell injection was required. In the cells-followed-by-Cy system providing successful skin tolerance, five mechanisms were identified using the correlation between super-antigens and T-cell receptor (TCR) Vβ segments mainly in the H-2-identical murine combinations. Those consist of: 1) clonal destruction of antigen-stimulated-thus-proliferating mature T cells with Cy; 2) peripheral clonal deletion associated with immediate peripheral chimerism; 3) intrathymic clonal deletion associated with intrathymic chimerism; 4) delayed generation of suppressor T (Ts) cells; and 5) delayed generation of clonal anergy. These five mechanisms are insufficient to induce tolerance when the donor-recipient combinations are disparate in MHC antigens plus minor H antigens as is seen in haploBMT. Clonal destruction is incomplete when the antigenic disparity is too strong to establish intrathymic mixed chimerism. Although this incomplete clonal destruction leaves the less-proliferative, antigen-stimulated T cells behind, these cells may confer graft-versus-leukemia (GVL) effects after haploBMT/PTCy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Rahban ◽  
Samira Danyali ◽  
Jalal Zaringhalam ◽  
Homa Manaheji

Abstract Objectives The most notable adverse side effects of chronic morphine administration include tolerance and hyperalgesia. This study investigated the involvement of dorsal root ganglion (DRG) protein kinase Cɛ (PKCɛ) expression during chronic morphine administration and also considered the relationship between DRG PKCɛ expression and the substance P- neurokinin1 receptor (SP- NK1R) activity. Methods Thirty-six animals were divided into six groups (n=6) in this study. In the morphine and sham groups, rats received 10 µg intrathecal (i.t.) morphine or saline for eight consecutive days, respectively. Behavioral tests were performed on days 1 and 8 before and after the first injections and then 48 h after the last injection (day 10). In the treatment groups, rats received NK1R antagonist (L-732,138, 25 µg) daily, either alone or 10 min before a morphine injection, Sham groups received DMSO alone or 10 min before a morphine injection. Animals were sacrificed on days 8 and 10, and DRG PKCɛ and SP expression were analyzed by western blot and immunohistochemistry techniques, respectively. Results Behavioral tests indicated that tolerance developed following eight days of chronic morphine injection. Hyperalgesia was induced 48 h after the last morphine injection. Expression of SP and PKCɛ in DRG significantly increased in rats that developed morphine tolerance on day 8 and hyperalgesia on day 10, respectively. NK1R antagonist (L-732,138) not only blocked the development of hyperalgesia and the increase of PKCɛ expression but also alleviated morphine tolerance. Conclusions Our results provide evidence that DRG PKCɛ and SP-NK1R most likely participated in the generation of morphine tolerance and hyperalgesia. Pharmacological inhibition of SP-NK1R activity in the spinal cord suggests a role for NK1R and in restricting some side effects of chronic morphine. All experiments were performed by the National Institute of Health (NIH) Guidelines for the Care and Use of Laboratory Animals (NIH Publication No. 80-23, revised1996) and were approved by the Animal Ethics Committee of Shahid Beheshti University of Medical Sciences, Tehran, Iran (IR.SBMU.MSP.REC.1396.130).


Nutrire ◽  
2021 ◽  
Vol 46 (2) ◽  
Author(s):  
Oluseye Odebiyi ◽  
Joseph Badejo ◽  
Babatunde Alabi ◽  
Abayomi Ajayi ◽  
Olugbenga Iwalewa ◽  
...  

Author(s):  
O. Bat-Erdene ◽  
A. Szegő ◽  
M. Gyöngyik ◽  
I. Mirmazloum ◽  
I. Papp

Silicon (Si) has long been considered as non-essential element for plant’s growth and production. Numerous efforts are being made for the discovery of its beneficial effects with large scale studies laying foundation for new findings and hypotheses. Therefore, Si has been suggested to be a quasi-essential element due to its positive effects against biotic and abiotic stresses alike. Though Si is the second most abundant element in the soil profile, its availability to plants is limited to the form of monosilicic acid only. Besides, plants’ ability to take-up Si and use it in their physiological processes also depends on the available transporters associated with it. Thus, the present review covers uptake and transport of silicon in plants as well as Si mediated physiological processes, including mechanisms underlying induced tolerance against biotic and abiotic stresses with a particular emphasis on horticultural species.


Sign in / Sign up

Export Citation Format

Share Document