scholarly journals Angiotensin-induced sodium excretion patterns in cirrhosis: Role of renal prostaglandins

1982 ◽  
Vol 21 (1) ◽  
pp. 70-77 ◽  
Author(s):  
Elias A. Lianos ◽  
Nahid Alavi ◽  
Morris Tobin ◽  
Rocco Venuto ◽  
Carl J. Bentzel
1999 ◽  
Vol 276 (3) ◽  
pp. R790-R798 ◽  
Author(s):  
Ai-Ping Zou ◽  
Kasem Nithipatikom ◽  
Pin-Lan Li ◽  
Allen W. Cowley

This study determined the levels of adenosine in the renal medullary interstitium using microdialysis and fluorescence HPLC techniques and examined the role of endogenous adenosine in the control of medullary blood flow and sodium excretion by infusing the specific adenosine receptor antagonists or agonists into the renal medulla of anesthetized Sprague-Dawley rats. Renal cortical and medullary blood flows were measured using laser-Doppler flowmetry. Analysis of microdialyzed samples showed that the adenosine concentration in the renal medullary interstitial dialysate averaged 212 ± 5.2 nM, which was significantly higher than 55.6 ± 5.3 nM in the renal cortex ( n = 9). Renal medullary interstitial infusion of a selective A1antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 300 pmol ⋅ kg−1 ⋅ min−1, n = 8), did not alter renal blood flows, but increased urine flow by 37% and sodium excretion by 42%. In contrast, renal medullary infusion of the selective A2 receptor blocker 3,7-dimethyl-1-propargylxanthine (DMPX; 150 pmol ⋅ kg−1 ⋅ min−1, n = 9) decreased outer medullary blood flow (OMBF) by 28%, inner medullary blood flows (IMBF) by 21%, and sodium excretion by 35%. Renal medullary interstitial infusion of adenosine produced a dose-dependent increase in OMBF, IMBF, urine flow, and sodium excretion at doses from 3 to 300 pmol ⋅ kg−1 ⋅ min−1( n = 7). These effects of adenosine were markedly attenuated by the pretreatment of DMPX, but unaltered by DPCPX. Infusion of a selective A3receptor agonist, N 6-benzyl-5′-( N-ethylcarbonxamido)adenosine (300 pmol ⋅ kg−1 ⋅ min−1, n = 6) into the renal medulla had no effect on medullary blood flows or renal function. Glomerular filtration rate and arterial pressure were not changed by medullary infusion of any drugs. Our results indicate that endogenous medullary adenosine at physiological concentrations serves to dilate medullary vessels via A2 receptors, resulting in a natriuretic response that overrides the tubular A1 receptor-mediated antinatriuretic effects.


1982 ◽  
Vol 170 (4) ◽  
pp. 517-522
Author(s):  
Y. R. Barbella ◽  
J. N. D. Wurpel ◽  
W. B. Severs

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Ahmed El-Tahawy ◽  
Mohammad Mohammad ◽  
Magdy AbdSamee ◽  
Mohammad Al-Daydammony

1985 ◽  
Vol 249 (2) ◽  
pp. F299-F307 ◽  
Author(s):  
M. E. Olsen ◽  
J. E. Hall ◽  
J. P. Montani ◽  
A. C. Guyton ◽  
H. G. Langford ◽  
...  

The aim of this study was to determine the role of changes in renal arterial pressure (RAP), renal hemodynamics, and tubular reabsorption in mediating the natriuretic and antinatriuretic actions of angiotensin II (ANG II). In seven anesthetized dogs, endogenous ANG II formation was blocked with captopril, and ANG II was infused intravenously at rates of 5-1,215 ng X kg-1 X min-1 while RAP was either servo-controlled at the preinfusion level or permitted to increase. When RAP was servo-controlled, ANG II infusion at all rates from 5-1,215 ng X kg-1 X min-1 decreased urinary sodium excretion (UNaV) and fractional sodium excretion (FENa) while increasing fractional reabsorption of lithium (FRLi) (an index of proximal tubular fractional sodium reabsorption) and causing no change in calculated distal tubule fractional sodium reabsorption (FRDNa). When RAP was permitted to increase, ANG II infusion rates up to 45 ng X kg-1. min-1 also decreased UNaV and FENa while increasing FRLi and causing no change in FRDNa. However, at 135 ng X kg-1 X min-1 and above, UNaV and FENa increased while FRLi and FRDNa decreased when RAP was allowed to rise, even though renal blood flow and filtration fraction were not substantially different from the values observed when RAP was servo-controlled. Filtered sodium load was slightly higher when RAP was permitted to increase during ANG II infusion compared with when RAP was servo-controlled, although the differences were not statistically significant. Thus, even very large doses of ANG II cause antinatriuresis when RAP is prevented from increasing.(ABSTRACT TRUNCATED AT 250 WORDS)


1995 ◽  
Vol 268 (3) ◽  
pp. F455-F460 ◽  
Author(s):  
A. L. Clavell ◽  
A. J. Stingo ◽  
K. B. Margulies ◽  
R. R. Brandt ◽  
J. C. Burnett

Endothelin (ET) is a potent vasoconstrictor peptide of endothelial origin, which at low doses results in renal vasoconstriction and diuresis with variable actions on sodium excretion. The current study conducted in four groups of anesthetized dogs was designed to define the role of the ETA and ETB receptor subtypes in the renal actions of low-dose exogenous ET. Group 1 (n = 4) animals served as time controls. In group 2 (n = 6) a systemic ET-1 (5 ng.kg-1.min-1) infusion mediated renal vasoconstriction, antinatriuresis with increases in proximal fractional reabsorption of sodium, and diuresis with a decrease in urine osmolality. In group 3 (n = 6) intrarenal BQ-123 (4 micrograms.kg-1.min-1), a selective ETA antagonist, abolished the systemic ET-1-mediated changes in renal hemodynamics and unmasked a natriuretic action at the level of the proximal tubule. In contrast, the diuretic response of ET was not altered by BQ-123. In group 4 (n = 6) intrarenal sarafotoxin 6-c, a selective ETB receptor agonist, resulted in a diuretic response without a change in sodium excretion. These studies suggest that the ETA receptor contributes to the renal vasoconstriction, whereas the ETB receptor is largely responsible for the diuretic response during exogenous ET. This study also suggests that at low doses ET is natriuretic in vivo by decreasing proximal tubular reabsorption of sodium independent of ETA or ETB receptor activation.


Sign in / Sign up

Export Citation Format

Share Document