adenosine concentration
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 12)

H-INDEX

35
(FIVE YEARS 2)

2021 ◽  
Vol 11 (4) ◽  
pp. 671-682
Author(s):  
M. E. Dyakova ◽  
N. B. Serebryanaya ◽  
L. D. Kiryukhina ◽  
D. S. Esmedlyaeva ◽  
P. K. Yablonskiy

Uncovering involvement of the purinergic system in the pathogenesis of ventilation disorders (VD) may provide additional information about the pathophysiological mechanisms leading to the development of VD in pulmonary tuberculosis (PT). The aim was to identify a relationship between the parameters of adenosine metabolism, inflammatory response and altered ventilation metabolism in PT patients. Materials and methods. Obstructive and mixed PT patients were assigned to subgroups with/without VD for assessing adenosine deaminase activity (ADA-1, 2) in serum, mononuclear cells, neutrophils; ecto-5’-nucleotidase (ecto-5’-NT); CD26 (dipeptidyl peptidase-4, DPP-4), phagocyte oxidative burst measured by NO generation. Results. PT patients showed decreased ADA-1 and CD26 (DPP-4), but increased ADA-2. Elevated intracellular adenosine concentration was found in mononuclear cells in patients lacking VD, whereas patients with mixed and obstructive VD — had it in neutrophils. Mononuclear cells of patients with PT lacking VD as well as with obstructive VD type had decreased NO3– concentration. Neutrophil hyperactivity was recorded in all groups of PT patients. Patients with PT lacking VD as well as with mixed VD type showed that the parameters of external respiration were associated with activity of extra-/intracellular ADA, whereas obstructive VD was caused by excessive formation of serum adenosine. Changes in respiratory function in PT were associated with decreased level of serum NO radicals, impaired nitrogen-dependent bactericidal phagocyte activity, and overproduced neutrophil oxygen radicals. Conclusion. Purinergic regulation is involved in regulating inflammatory and compensatory processes in PT patients as well as impaired ventilation efficiency. The most severe respiratory disorders observed in PT patients with mixed VD type are associated with the most prominent changes in nucleotidase activity, particularly ecto-ADA-2 and DPP-4/CD26.


Author(s):  
Dat Ngoc Xuan Mai ◽  
Lua Thi Xuan Danh ◽  
Huy Dinh Minh Dang ◽  
Ha Van Nguyen ◽  
Hanh Thi Kieu Ta ◽  
...  

Mesoporous silica nanoparticles (MSNs) are used as drug delivery materials because of their outstanding features such as large surface area, easy synthesis and high biocompability. In this study, inorganic mesoporous nanosilica material, MCM-41, was synthesized by sol-gel hydrothermal method using tetraethyl orthosilicate precursor (TEOS). The material structure and composition were analyzed by X-ray power diffraction (P-XRD), N2 adsorption isotherm, thermalgravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). Its morphology was examined by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The results showed that synthesized MCM-41 has a spherical shape, homogeneous with an average size of 100 nm. The specific surface area is 845 m2 g􀀀1, the pore size is approximately 35 Å. It has high thermal stability until 800oC. FT-IR result showed the formation of the Si-O-Si bond in the structure. The adenosine loading capacity of MCM-41 was investigated based on the influence of loading factors including adenosine concentration, time, solvent, and temperature. The kinetics and thermodynamics of the adsorption processes were also studied. The adenosine loading ability on MCM-41 is significant high, approximately 1699 mg g􀀀1. The kinetic and thermodynamic results showed that the drug adsorbed of MCM-41 occurred with fast rate and spontaneously. Moreover, the release profile of adenosine proved that the drug release process occurred quickly which is suitable for application in acute disease treatment.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii222-ii223
Author(s):  
Shannon Coy ◽  
Rumana Rashid ◽  
Sylwia Stopka ◽  
Jia-Ren Lin ◽  
Philipp Euskirchen ◽  
...  

Abstract INTRODUCTION Purinergic signaling plays critical roles in the regulation of tumor growth and anti-tumor immunity via autocrine/paracrine binding of metabolites to receptors on neoplastic and non-neoplastic populations. Extracellular purine concentrations are mediated by the ectonucleotidase enzymes CD39 and CD73, which catabolize ATP to adenosine. Within tumors such as glioblastoma, neoplastic, immune, and stromal cells expressing these enzymes may co-localize to generate immunosuppressive adenosine-rich environments. However, the composition, architecture, and phenotypic properties of these tumor ecosystems and their relationship to tumor genotype are poorly characterized. METHODS We quantified CD73 expression by immunohistochemistry in a cohort of CNS tumors [meningiomas(n=222), gliomas(n=244), ependymomas(n=44), medulloblastomas(n=24), and craniopharyngiomas(n=38)]. We used publicly-available single-cell RNA-seq data and 36-marker multiplexed tissue imaging (t-CyCIF) of 139 clinically and genomically annotated glioblastoma resections to characterize CD39 and CD73-expressing populations, define the immune architecture and tumor cell-states at single cell resolution, and identify markers of clinical outcome. We used mass spectrometry imaging (MALDI-MSI) to generate spatially-resolved quantification of purine metabolite levels in glioblastoma resections (n=10). RESULTS CD73 exhibited strong expression in a subset of gliomas and meningiomas but was typically not expressed in ependymomas or medulloblastomas. CD73 expression correlated with poor progression-free-survival in IDH-wildtype glioblastoma (p=0.04). scRNA-seq and t-CyCIF in glioblastoma showed CD73 expression in tumor cells, and CD39 expression in macrophages and endothelial cells. MALDI-MSI showed significantly greater adenosine concentrations (3.5-fold;p=0.04) in glioblastomas with high CD73 expression. scRNA-seq showed direct correlations between stem-like mRNA expression, proliferation, and CD73 expression in DIPG. CD73 expression significantly correlated with EGFR amplification, interferon signaling, and PD-L1 expression in glioblastoma. CONCLUSIONS Phenogenomic analysis of purinergic immunomodulatory signaling revealed significant interplay between CD73 activity and genotype, adenosine concentration, differentiation-state, clinical outcome, and possible interaction between CD39-positive macrophages and CD73-positive neoplastic cells. Anti-CD73 therapy may provide therapeutic benefits in glioblastoma by blunting immunosuppressive and oncogenic adenosine signaling.


BMC Neurology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhong Luo ◽  
Jing Wang ◽  
Shirong Tang ◽  
Yongsu Zheng ◽  
Xuejiao Zhou ◽  
...  

Abstract Background Dynamic-related protein 1 (Drp1) is a key protein involved in the regulation of mitochondrial fission, and it could affect the dynamic balance of mitochondria and appears to be protective against neuronal injury in epileptic seizures. Equilibrative nucleoside transporter 1 (ENT1) is expressed and functional in the mitochondrial membrane that equilibrates adenosine concentration across membranes. Whether Drp1 participates in the pathogenesis of epileptic seizures via regulating function of ENT1 remains unclear. Methods In the present study, we used pilocarpine to induce status epilepticus (SE) in rats, and we used mitochondrial division inhibitor 1 (Mdivi-1), a selective inhibitor to Drp1, to suppress mitochondrial fission in pilocarpine-induced SE model. Mdivi-1administered by intraperitoneal injection before SE induction, and the latency to firstepileptic seizure and the number of epileptic seizures was thereafter observed. The distribution of Drp1 was detected by immunofluorescence, and the expression patterns of Drp1 and ENT1 were detected by Western blot. Furthermore, the mitochondrial ultrastructure of neurons in the hippocampal CA1 region was observed by transmission electron microscopy. Results We found that Drp1 was expressed mainly in neurons and Drp1 expression was significantly upregulated in the hippocampal and temporal neocortex tissues at 6 h and 24 h after induction of SE. Mitochondrial fission inhibitor 1 attenuated epileptic seizures after induction of SE, reduced mitochondrial damage and ENT1 expression. Conclusions These data indicate that Drp1 is upregulated in hippocampus and temporal neocortex after pilocarpine-induced SE and the inhibition of Drp1 may lead to potential therapeutic target for SE by regulating ENT1 after pilocarpine-induced SE.


HORMONES ◽  
2020 ◽  
Author(s):  
Areta Hebanowska ◽  
Paulina Mierzejewska ◽  
Alicja Braczko

Abstract Purpose Estrogens have beneficial effects on the cardiovascular system, promoting vasodilation, endothelial cells growth, relaxation, and regulation of blood pressure. Some of these effects could be associated with the purinergic system known for the control of vasodilation, inflammation, and platelet function. The aim of our study was the evaluation of ATP, AMP, and adenosine extracellular catabolism, catalyzed by ectonucleoside triphosphate diphosphohydrolase-1 (CD39), ecto-5′-nucleotidase (CD73), and ecto-adenosine deaminase (eADA) in mouse aortas. Methods Extracellular hydrolysis of ATP, AMP, and adenosine was estimated on the aortic surface of 3-month-old female and male C57BL/6 J wild-type (WT) mice, in female WT mouse aortas incubated for 48 h in the presence or absence of 100 nM estradiol, and in WT female mouse and ApoE-/-LDL-R-/- aortas. The conversion of substrates to products was analyzed by high-pressure liquid chromatography (HPLC). Results We demonstrated significantly higher adenosine deamination rate in WT male vs. female mice (p = 0.041). We also noted the lower adenosine hydrolysis in aortas exposed to estradiol, as compared with the samples incubated in estradiol-free medium (p = 0.043). Finally, we observed that adenosine conversion to inosine was significantly higher on the surface of ApoE-/-LDL-R-/- aortas compared with WT mice (p = 0.001). No such effects were noted in ATP and AMP extracellular hydrolysis. Conclusion We conclude that estradiol inhibits the extracellular degradation of adenosine to inosine, which may be an element of its vascular protective effect, as it will lead to an increase in extracellular adenosine concentration. We can also assume that during the development of the atherosclerotic process, the protective role of estradiol in the regulation of adenosine degradation may be obscured by other pathogenic factors.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 740 ◽  
Author(s):  
Catherine Feliu ◽  
Hélène Peyret ◽  
Sylvie Brassart-Pasco ◽  
Floriane Oszust ◽  
Gaël Poitevin ◽  
...  

Background: Several studies have reported the beneficial effects of anti-platelet drugs in cardioprotection against ischaemia–reperfusion injuries. To date, no studies have focused on the indirect cytoprotective effects of ticagrelor via adenosine receptor on the endothelium. Method: By evaluating cell viability and cleaved caspase 3 expression, we validated a model of endothelial cell apoptosis induced by hypoxia. In hypoxic endothelial cells treated with ticagrelor, we quantified the extracellular concentration of adenosine, and then we studied the involvement of adenosine pathways in the cytoprotective effect of ticagrelor. Results: Our results showed that 10 µM ticagrelor induced an anti-apoptotic effect in our model associated with an increase of extracellular adenosine concentration. Similar experiments were conducted with cangrelor but did not demonstrate an anti-apoptotic effect. We also found that A2B and A3 adenosine receptors were involved in the anti-apoptotic effect of ticagrelor in endothelial cells exposed to 2 h of hypoxia stress. Conclusion: we described an endothelial cytoprotective mechanism of ticagrelor against hypoxia stress, independent of blood elements. We highlighted a mechanism triggered mainly by the increased extracellular bioavailability of adenosine, which activates A2B and A3 receptors on the endothelium.


Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582093532 ◽  
Author(s):  
Xin Xie ◽  
Liangcheng Shang ◽  
Sudan Ye ◽  
Chun Chen

Adenosine plays an important role in the physiological and pathological conditions of the body by combining different types of adenosine receptors widely distributed in various tissues in the body. In present study, an acute model for paraquat-poisoning in Caenorhabditis elegans was established for quantitative assessment via a time-dose-mortality (TDM) modeling technique with various paraquat doses over 8 hours. Adenosine was first used to precondition at high, medium, and low concentrations and the survival rate of C. elegans was recorded to evaluate adenosine antistress protection against paraquat damage. The results revealed that the TDM model was good for the quantitative assessment of paraquat-poisoning on C. elegans based on the Hosmer-Lemeshow test for homogeneity of modeling ( P = .38). The survival rates of adenosine-preconditioned C. elegans have a dose-dependent association with adenosine concentration. At 3000 μM (high concentration) and 300 μM (medium concentration), adenosine-preconditioned C. elegans still had survival rates of 5.38% ± 1.68% and 5.0% ± 1.19% in the subsequent 8 hours observation period. On the contrary, the survival rates of those receiving 30 μM (low concentration) and the 0 μM (unpreconditioned treatment) were zero. To conclude, adenosine preconditioning had protective effects on C. elegans intoxicated with paraquat by decreasing its mortality rate.


2020 ◽  
Vol 21 (7) ◽  
pp. 2304
Author(s):  
Hitomi Sudo ◽  
Atsushi B. Tsuji ◽  
Aya Sugyo ◽  
Gene Kurosawa ◽  
Yoshikazu Kurosawa ◽  
...  

Background: CD73 is an ectonucleotidase regulating extracellular adenosine concentration and plays an important role in adenosine-mediated immunosuppressive pathways. The efficacy of CD73-targeted therapy depends on the expression levels of CD73; therefore, monitoring CD73 status in cancer patients would provide helpful information for selection of patients who would benefit from CD73-targeted therapy. Here, we evaluated the ability of 111In-labeled antibody 067-213, which has high affinity for human CD73, to act as a noninvasive imaging probe. Methods: Cell binding and competitive inhibition assays for 111In-labeled 067-213 were conducted using MIAPaCa-2 (high CD73 expression) and A431 (low CD73 expression) cells. For in vivo assessments, biodistribution and SPECT/CT studies were conducted in MIAPaCa-2 and A431 tumor-bearing mice. To estimate the absorbed dose in humans, biodistribution and SPECT/CT studies were conducted in healthy rats. Results: 111In-labeled 067-213 bound to MIAPaCa-2 and A431 cells in a CD73-dependent manner and the affinity loss after 111In-labeling was limited. Biodistribution and SPECT/CT studies with 111In-labeled 067-213 in mice showed high uptake in MIAPaCa-2 tumors and lower uptake in A431 tumors. In rats, the probe did not show high uptake in normal organs, including endogenously CD73-expressing organs. The estimated absorbed doses in humans were reasonably low. Conclusions: 111In-labeled 067-213 showed CD73-expression-dependent tumor uptake and low uptake in normal organs and tissues. Radiolabeled 067-213 holds promise as an imaging probe for noninvasive evaluation of CD73 expression levels in patients. Our data encourage further clinical studies to clarify a role for CD73 monitoring in patients receiving CD73-targeted immune therapy.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna Vlachodimou ◽  
Adriaan P. IJzerman ◽  
Laura H. Heitman

Abstract Transporters are important therapeutic but yet understudied targets due to lack of available assays. Here we describe a novel label-free, whole-cell method for the functional assessment of Solute Carrier (SLC) inhibitors. As many SLC substrates are also ligands for G protein-coupled receptors (GPCRs), transporter inhibition may affect GPCR signalling due to a change in extracellular concentration of the substrate/ligand, which can be monitored by an impedance-based label-free assay. For this study, a prototypical SLC/GPCR pair was selected, i.e. the equilibrative nucleoside transporter-1 (SLC29A1/ENT1) and an adenosine receptor (AR), for which adenosine is the substrate/ligand. ENT1 inhibition with three reference compounds was monitored sensitively via AR activation on human osteosarcoma cells. Firstly, the inhibitor addition resulted in an increased apparent potency of adenosine. Secondly, all inhibitors concentration-dependently increased the extracellular adenosine concentration, resulting in an indirect quantitative assessment of their potencies. Additionally, AR activation was abolished by AR antagonists, confirming that the monitored impedance was AR-mediated. In summary, we developed a novel assay as an in vitro model system that reliably assessed the potency of SLC29A1 inhibitors via AR signalling. As such, the method may be applied broadly as it has the potential to study a multitude of SLCs via concomitant GPCR signalling.


2019 ◽  
Vol 221 (10) ◽  
pp. 1598-1606 ◽  
Author(s):  
Bernard J C Macatangay ◽  
Edwin K Jackson ◽  
Kaleab Z Abebe ◽  
Diane Comer ◽  
Joshua Cyktor ◽  
...  

Abstract Background Adenosine is a potent immunoregulatory nucleoside produced during inflammatory states to limit tissue damage. We hypothesized that dipyridamole, which inhibits cellular adenosine uptake, could raise the extracellular adenosine concentration and dampen chronic inflammation associated with human immunodeficiency virus (HIV) type 1. Methods Virally suppressed participants receiving antiretroviral therapy were randomized 1:1 for 12 weeks of dipyridamole (100 mg 4 times a day) versus placebo capsules. All participants took open-label dipyridamole during weeks 12–24. Study end points included changes in markers of systemic inflammation (soluble CD163 and CD14, and interleukin 6) and levels of T-cell immune activation (HLA-DR+CD38+). Results Of 40 participants who were randomized, 17 dipyridamole and 18 placebo recipients had baseline and week 12 data available for analyses. There were no significant changes in soluble markers, apart from a trend toward decreased levels of soluble CD163 levels (P = .09). There was a modest decrease in CD8+ T-cell activation (−17.53% change for dipyridamole vs +13.31% for placebo; P = .03), but the significance was lost in the pooled analyses (P = .058). Dipyridamole also reduced CD4+ T-cell activation (−11.11% change; P = .006) in the pooled analyses. In post hoc analysis, detectable plasma dipyridamole levels were associated with higher levels of inosine, an adenosine surrogate, and of cyclic adenosine monophosphate. Conclusion Dipyridamole increased extracellular adenosine levels and decreased T-cell activation significantly among persons with HIV-1 infection receiving virally suppressive therapy.


Sign in / Sign up

Export Citation Format

Share Document