Role of Fractional Sodium Excretion in patients with Refractory Hypertension

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Ahmed El-Tahawy ◽  
Mohammad Mohammad ◽  
Magdy AbdSamee ◽  
Mohammad Al-Daydammony
1981 ◽  
Vol 61 (s7) ◽  
pp. 327s-330s ◽  
Author(s):  
Keishi Abe ◽  
Yutaka Imai ◽  
Makito Sato ◽  
Toshiaki Haruyama ◽  
KO Sato ◽  
...  

1. The role of renal prostaglandin E (PGE) and kallikrein in the mechanism of the exaggerated fractional sodium excretion in hypertensive patients with advanced renal disease was investigated. 2. Urinary excretion of PGE and kallikrein was significantly decreased in patients with sustained hypertension. 3. Four times higher values for fractional sodium excretion and four or five times higher values for the urinary excretion of PGE corrected for creatinine clearance were found in patients with sustained hypertension. There was a significant positive correlation (r = 0.677) between the two, suggesting that PGE in the renal tubular compartment may be involved in the mechanism of the exaggerated fractional Na excretion in patients with advanced renal disease. 4. The urinary excretion rate of kallikrein corrected for creatinine clearance was three times greater in patients with borderline hypertension, but not significantly increased in those with sustained hypertension, compared with that in healthy volunteers.


2008 ◽  
Vol 294 (6) ◽  
pp. F1473-F1480 ◽  
Author(s):  
Weidong Wang ◽  
Chunling Li ◽  
Sandra N. Summer ◽  
Sandor Falk ◽  
Wei Wang ◽  
...  

The effect of endotoxemia (lipopolysaccharide, 2.5 mg/kg ip) was investigated in aquaporin (AQP) 1 knockout (KO) compared with wild-type (WT) mice. At baseline, KO mice exhibited higher water intake (WI) and urine output (UO). After endotoxemia, WI and UO remained higher in the KO than WT mice, and urine osmolality was lower. The higher serum osmolality in AQP1-KO mice during endotoxemia was associated with higher AQP2 (133 ± 8 vs. 100 ± 3%, P < 0.01), AQP3 (140 ± 8 vs. 100 ± 4%, P < 0.001) and Na+-K+-2Cl− cotransporter type 2 (NKCC2; 152 ± 14 vs. 100 ± 15%, P < 0.05) expression than that in WT mice. These responses during endotoxemia in the AQP1-KO mice compared with WT were associated with lower glomerular filtration rate (GFR) (69 ± 8 vs. 96 ± 8 ml/min, P < 0.05) and renal blood flow (0.77 ± 0.1 vs. 1.01 ± 0.1 ml/min, P < 0.01). Urinary sodium excretion and fractional sodium excretion were higher in KO compared with WT mice in endotoxemia and were accompanied by more severe tubular injury. With water repletion and comparable serum osmolalities, GFR was still lower in KO (57 ± 13 vs. 120 ± 6 ml/min, P < 0.01) compared with WT during endotoxemia. The abundance of AQP2 and AQP3 protein in KO mice was not different from WT mice; however, NKCC2, Na+/H+ exchanger type 3, and fractional sodium excretion remained higher in KO compared with WT. Thus the polyuria in AQP1-KO mice does not protect against endotoxemia-induced acute kidney injury but rather absence of AQP1 predisposed to enhanced endotoximic renal injury.


1978 ◽  
Vol 54 (5) ◽  
pp. 567-572 ◽  
Author(s):  
M. D. Lifschitz

1. Studies in anaesthetized animals suggest that the renal nerves have a role in the regulation of sodium excretion. Urinary sodium excretion decreases when the renal nerves are stimulated and increases after renal denervation or ganglionic blockade. In order to define the role of the renal nerves in the regulation of urinary sodium excretion in awake animals, dogs were prepared with one kidney denervated and the other intact and the bladder split so that urine could be collected from each kidney. Denervation was confirmed by kidney noradrenaline analysis (1·72 ± 0·29 vs 0·18 ± 0·12 nmol/g). 2. These dogs were studied awake with one of two protocols on each of two separate days. In protocol VH, volume expansion (5% body weight) was followed by haemorrhage of 2% body weight. Fractional sodium excretion fell from 4·7 ± 0·5 to 1·1 ± 0·2% on the denervated side and from 5·6 ± 0·6 to 1·4 ± 0·3% on the intact side. Inulin and p-aminohippurate clearance fell similarly on both sides. 3. In protocol HV, haemorrhage of 2% body weight was followed by blood replacement and volume expansion of 5% body weight. In this second protocol fractional sodium excretion during haemorrhage was 0·23 ± 0·07 and 0·24 ± 0·09% for denervated and intact kidneys respectively and increased to 2·04 ± 0·32 and 2·78 ± 0·60 after volume expansion. 4. In both protocols the denervated kidney was able to reabsorb sodium as well as the innervated kidney during haemorrhage and was able to increase fractional sodium excretion as well as the denervated kidney during volume expansion. These results suggest that the renal nerves do not have a significant role in the regulation of sodium excretion in conscious animals.


1984 ◽  
Vol 247 (2) ◽  
pp. F246-F251 ◽  
Author(s):  
W. S. Spielman

The action of theophylline on the adenosine-induced decrease in renin release was studied in anesthetized dogs. Adenosine inhibited renin release, decreased GFR and fractional sodium excretion, and decreased the concentration of angiotensin II in the renal lymph. Theophylline (5 mumol/min intrarenally) had no significant effect on GFR or RBF yet produced a significant increase in the release of renin and the fractional excretion of sodium. The intrarenal infusion of adenosine (3 X 10(-7) mol/min) during theophylline infusion produced no effect on GFR or RBF, but fractional sodium excretion and renin release were significantly decreased. Adenosine was infused at a lower dose (3 X 10(-8) mol/min) during theophylline (5 X 10(-6) mol/min) infusion in a second group of dogs. With the exception of fractional sodium excretion, all effects of adenosine were effectively antagonized by theophylline. Theophylline at 5 X 10(-6) mol/min, which stimulates renin release and effectively antagonizes the renal effects of adenosine, had no detectable effect on cAMP measured in renal cortex. Furthermore, no change in cortical cAMP was observed until theophylline was increased 50-fold over the dose effective in antagonizing adenosine. These findings demonstrate that theophylline, at concentrations having no effect on cortical cAMP, antagonizes the effect of adenosine on renin release. The results are also consistent with the view that theophylline stimulates renin release by a mechanism other than its action on cAMP.


1999 ◽  
Vol 276 (3) ◽  
pp. R790-R798 ◽  
Author(s):  
Ai-Ping Zou ◽  
Kasem Nithipatikom ◽  
Pin-Lan Li ◽  
Allen W. Cowley

This study determined the levels of adenosine in the renal medullary interstitium using microdialysis and fluorescence HPLC techniques and examined the role of endogenous adenosine in the control of medullary blood flow and sodium excretion by infusing the specific adenosine receptor antagonists or agonists into the renal medulla of anesthetized Sprague-Dawley rats. Renal cortical and medullary blood flows were measured using laser-Doppler flowmetry. Analysis of microdialyzed samples showed that the adenosine concentration in the renal medullary interstitial dialysate averaged 212 ± 5.2 nM, which was significantly higher than 55.6 ± 5.3 nM in the renal cortex ( n = 9). Renal medullary interstitial infusion of a selective A1antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 300 pmol ⋅ kg−1 ⋅ min−1, n = 8), did not alter renal blood flows, but increased urine flow by 37% and sodium excretion by 42%. In contrast, renal medullary infusion of the selective A2 receptor blocker 3,7-dimethyl-1-propargylxanthine (DMPX; 150 pmol ⋅ kg−1 ⋅ min−1, n = 9) decreased outer medullary blood flow (OMBF) by 28%, inner medullary blood flows (IMBF) by 21%, and sodium excretion by 35%. Renal medullary interstitial infusion of adenosine produced a dose-dependent increase in OMBF, IMBF, urine flow, and sodium excretion at doses from 3 to 300 pmol ⋅ kg−1 ⋅ min−1( n = 7). These effects of adenosine were markedly attenuated by the pretreatment of DMPX, but unaltered by DPCPX. Infusion of a selective A3receptor agonist, N 6-benzyl-5′-( N-ethylcarbonxamido)adenosine (300 pmol ⋅ kg−1 ⋅ min−1, n = 6) into the renal medulla had no effect on medullary blood flows or renal function. Glomerular filtration rate and arterial pressure were not changed by medullary infusion of any drugs. Our results indicate that endogenous medullary adenosine at physiological concentrations serves to dilate medullary vessels via A2 receptors, resulting in a natriuretic response that overrides the tubular A1 receptor-mediated antinatriuretic effects.


1982 ◽  
Vol 170 (4) ◽  
pp. 517-522
Author(s):  
Y. R. Barbella ◽  
J. N. D. Wurpel ◽  
W. B. Severs

2018 ◽  
Vol 25 (6) ◽  
pp. 73-77 ◽  
Author(s):  
V. V. Elagin ◽  
D. A. Kostina ◽  
O. I. Bratchikov ◽  
M. V. Pokrovsky ◽  
T. G. Pokrovskaya

Aim.The research was designed to study the renoprotective properties of erythropoietin derivatives on the kidney ischemiareperfusion experimental model.Materials and methods.The renoprotective properties of asialo erythropoietin (0.4 μg/kg and 2.4 μg/kg 30 minutes before the induction of ischemia) and carbamylated darbepoetin (50 μg/kg 24 hours before the ischemic stimulus) were studied in comparison with erythropoietin and darbepoetin in a series of experiments on male Wistar rats on a 40-minute bilateral model of renal ischemia-reperfusion. The renoprotective properties were evaluated by the results of biochemical markers of acute kidney injury, the dynamics of glomerular filtration rate and fractional sodium excretion, as well as the severity of microcirculatory disorders.Results.It was found that the prophylactic use of asialo erythropoietin (dose-dependent) and carbamylated darbepoetin leads to a decrease in the serum concentration of markers of acute renal damage, an increase in the glomerular filtration rate, a decrease in fractional sodium excretion, and a decrease in microcirculatory disorders.Conclusion.Asialo erythropoietin and carbamylated darbepoetin have the pronounced renoprotective properties and are the promising agents for the prevention and treatment of acute kidney injury.


1985 ◽  
Vol 249 (2) ◽  
pp. F299-F307 ◽  
Author(s):  
M. E. Olsen ◽  
J. E. Hall ◽  
J. P. Montani ◽  
A. C. Guyton ◽  
H. G. Langford ◽  
...  

The aim of this study was to determine the role of changes in renal arterial pressure (RAP), renal hemodynamics, and tubular reabsorption in mediating the natriuretic and antinatriuretic actions of angiotensin II (ANG II). In seven anesthetized dogs, endogenous ANG II formation was blocked with captopril, and ANG II was infused intravenously at rates of 5-1,215 ng X kg-1 X min-1 while RAP was either servo-controlled at the preinfusion level or permitted to increase. When RAP was servo-controlled, ANG II infusion at all rates from 5-1,215 ng X kg-1 X min-1 decreased urinary sodium excretion (UNaV) and fractional sodium excretion (FENa) while increasing fractional reabsorption of lithium (FRLi) (an index of proximal tubular fractional sodium reabsorption) and causing no change in calculated distal tubule fractional sodium reabsorption (FRDNa). When RAP was permitted to increase, ANG II infusion rates up to 45 ng X kg-1. min-1 also decreased UNaV and FENa while increasing FRLi and causing no change in FRDNa. However, at 135 ng X kg-1 X min-1 and above, UNaV and FENa increased while FRLi and FRDNa decreased when RAP was allowed to rise, even though renal blood flow and filtration fraction were not substantially different from the values observed when RAP was servo-controlled. Filtered sodium load was slightly higher when RAP was permitted to increase during ANG II infusion compared with when RAP was servo-controlled, although the differences were not statistically significant. Thus, even very large doses of ANG II cause antinatriuresis when RAP is prevented from increasing.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document