scholarly journals Resolving the molecular mechanism of cadherin catch bond formation

2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Kristine Manibog ◽  
Hui Li ◽  
Sabyasachi Rakshit ◽  
Sanjeevi Sivasankar
2014 ◽  
Vol 106 (2) ◽  
pp. 450a
Author(s):  
Kristine Manibog ◽  
Hui Li ◽  
Sabyasachi Rakshit ◽  
Sanjeevi Sivasankar

2021 ◽  
Author(s):  
Muaz Nik Rushdi ◽  
Victor Pan ◽  
Kaitao Li ◽  
Stefano Travaglino ◽  
Hyun-Kyu Choi ◽  
...  

Antigen recognition of CD4+ T cells by the T cell receptor (TCR) can be greatly enhanced by the coreceptor CD4. Yet, understanding of the molecular mechanism is hindered by the ultra-low affinity of CD4 binding to class-II peptide-major histocompatibility complexes (pMHC). Using two-dimensional (2D) mechanical-based assays, we determined a CD4-pMHC interaction to have 3-4 logs lower affinity than cognate TCR-pMHC interactions, and to be susceptible to increased dissociation by forces (slip bond). In contrast, CD4 binds TCR-prebound pMHC at 5-6 logs higher affinity, forming TCR-pMHC-CD4 trimolecular bonds that are prolonged by force (catch bond) and modulated by protein mobility on the cell membrane, indicating profound TCR-CD4 cooperativity. Consistent with a tri-crystal structure, using DNA origami as a molecular ruler to titrate spacing between TCR and CD4 indicates 7-nm proximity enables optimal trimolecular bond formation with pMHC. Our results reveal how CD4 augments TCR antigen recognition.


2012 ◽  
Vol 102 (3) ◽  
pp. 12a
Author(s):  
Sabyasachi Rakshit ◽  
Yunxiang Zhang ◽  
Kristine Manibog ◽  
Omer L.M. Shafraz ◽  
Sanjeevi Sivasankar

2013 ◽  
Vol 104 (2) ◽  
pp. 168a
Author(s):  
Kristine Manibog ◽  
Hui Li ◽  
Sabyasachi Rakshit ◽  
Sanjeevi Sivasankar

2022 ◽  
Author(s):  
Muaz Rushdi ◽  
Victor Pan ◽  
Kaitao Li ◽  
Stefano Travaglino ◽  
Hyun-Kyu Choi ◽  
...  

Abstract Antigen recognition of CD4+ T cells by the T cell receptor (TCR) can be greatly enhanced by the coreceptor CD4. Yet, understanding of the molecular mechanism is hindered by the ultra-low affinity of CD4 binding to class-II peptide-major histocompatibility complexes (pMHC). Using two-dimensional (2D) mechanical-based assays, we determined a CD4–pMHC interaction to have 3-4 logs lower affinity than cognate TCR–pMHC interactions, and to be susceptible to increased dissociation by forces (slip bond). In contrast, CD4 binds TCR-prebound pMHC at 5-6 logs higher affinity, forming TCR–pMHC–CD4 trimolecular bonds that are prolonged by force (catch bond) and modulated by protein mobility on the cell membrane, indicating profound TCR–CD4 cooperativity. Consistent with a tri-crystal structure, using DNA origami as a molecular ruler to titrate spacing between TCR and CD4 indicates 7-nm proximity enables optimal trimolecular bond formation with pMHC. Our results reveal how CD4 augments TCR antigen recognition.


2001 ◽  
Vol 120 (5) ◽  
pp. A91-A91
Author(s):  
P TIETZ ◽  
P SPLINTER ◽  
M MCNIVEN ◽  
R HUEBERT ◽  
N LARUSSO

1998 ◽  
Vol 5 (1) ◽  
pp. 187A-187A
Author(s):  
J CARVAJAL ◽  
S KATO ◽  
J SAEZ ◽  
F LEIGHTON ◽  
G VALENZUELA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document