model membranes
Recently Published Documents


TOTAL DOCUMENTS

1807
(FIVE YEARS 186)

H-INDEX

86
(FIVE YEARS 7)

2022 ◽  
Vol 1864 (1) ◽  
pp. 183729
Author(s):  
Bárbara Claro ◽  
Eva González-Freire ◽  
Juan R. Granja ◽  
Rebeca Garcia-Fandiño ◽  
Jana Gallová ◽  
...  

2022 ◽  
Author(s):  
James Kelly ◽  
Jessica Swanson ◽  
Joseph Newman ◽  
Elisabetta Groppelli ◽  
Nicola Stonehouse ◽  
...  

Kobuviruses are an unusual and poorly characterised genus within the picornavirus family, and can cause gastrointestinal enteric disease in humans, livestock and pets. The human Kobuvirus, Aichi virus (AiV) can cause severe gastroenteritis and deaths in children below the age of five years, however this is a very rare occurrence. During the assembly of most picornaviruses (e.g. poliovirus, rhinovirus and foot-and-mouth disease virus), the capsid precursor protein VP0 is cleaved into VP4 and VP2. However, Kobuviruses retain an uncleaved VP0. From studies with other picornaviruses, it is known that VP4 performs the essential function of pore formation in membranes, which facilitates transfer of the viral genome across the endosomal membrane and into the cytoplasm for replication. Here, we employ genome exposure and membrane interaction assays to demonstrate that pH plays a critical role in AiV uncoating and membrane interactions. We demonstrate that incubation at low pH alters the exposure of hydrophobic residues within the capsid, enhances genome exposure and enhances permeabilisation of model membranes. Furthermore, using peptides we demonstrate that the N-terminus of VP0 mediates membrane pore formation in model membranes, indicating that this plays an analogous function to VP4. Importance: To initiate infection, viruses must enter a host cell and deliver their genome into the appropriate location. The picornavirus family of small non-enveloped RNA viruses includes significant human and animal pathogens and are also models to understand the process of cell entry. Most picornavirus capsids contain the internal protein VP4, generated from cleavage of a VP0 precursor. During entry, VP4 is released from the capsid. In enteroviruses this forms a membrane pore, which facilitates genome release into the cytoplasm. Due to high levels of sequence similarity, it is expected to play the same role for other picornaviruses. Some picornaviruses, such as Aichi virus, retain an intact VP0, and it is unknown how these viruses re-arrange their capsids and induce membrane permeability in the absence of VP4. Here we have used Aichi virus as a model VP0 virus to test for conservation of function between VP0 and VP4. This could enhance understanding of pore function and lead to development of novel therapeutic agents that block entry.


Author(s):  
Gianluca Del Frate ◽  
Marina Macchiagodena ◽  
Muhammad Jan Akhunzada ◽  
Francesca D’Autilia ◽  
Andrea Catte ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 974
Author(s):  
Seungho Choe

Cell-penetrating peptides (CPPs) have been widely used for drug-delivery agents; however, it has not been fully understood how they translocate across cell membranes. The Weighted Ensemble (WE) method, one of the most powerful and flexible path sampling techniques, can be helpful to reveal translocation paths and free energy barriers along those paths. Within the WE approach we show how Arg9 (nona-arginine) and Tat interact with a DOPC/DOPG(4:1) model membrane, and we present free energy (or potential mean of forces, PMFs) profiles of penetration, although a translocation across the membrane has not been observed in the current simulations. Two different compositions of lipid molecules were also tried and compared. Our approach can be applied to any CPPs interacting with various model membranes, and it will provide useful information regarding the transport mechanisms of CPPs.


2021 ◽  
Vol 28 ◽  
pp. 101143
Author(s):  
Guzel S. Shurshalova ◽  
Holger A. Scheidt ◽  
Markus Fischer ◽  
Daniel Huster ◽  
Albert V. Aganov ◽  
...  
Keyword(s):  

2021 ◽  
Vol 278 ◽  
pp. 106681
Author(s):  
Julia Ortiz ◽  
Francisco J. Aranda ◽  
José A. Teruel ◽  
Antonio Ortiz
Keyword(s):  

2021 ◽  
Vol 22 (18) ◽  
pp. 10085
Author(s):  
Aritz B. García-Arribas ◽  
Félix M. Goñi ◽  
Alicia Alonso

Lipid model membranes are important tools in the study of biophysical processes such as lipid self-assembly and lipid–lipid interactions in cell membranes. The use of model systems to adequate and modulate complexity helps in the understanding of many events that occur in cellular membranes, that exhibit a wide variety of components, including lipids of different subfamilies (e.g., phospholipids, sphingolipids, sterols…), in addition to proteins and sugars. The capacity of lipids to segregate by themselves into different phases at the nanoscale (nanodomains) is an intriguing feature that is yet to be fully characterized in vivo due to the proposed transient nature of these domains in living systems. Model lipid membranes, instead, have the advantage of (usually) greater phase stability, together with the possibility of fully controlling the system lipid composition. Atomic force microscopy (AFM) is a powerful tool to detect the presence of meso- and nanodomains in a lipid membrane. It also allows the direct quantification of nanomechanical resistance in each phase present. In this review, we explore the main kinds of lipid assemblies used as model membranes and describe AFM experiments on model membranes. In addition, we discuss how these assemblies have extended our knowledge of membrane biophysics over the last two decades, particularly in issues related to the variability of different model membranes and the impact of supports/cytoskeleton on lipid behavior, such as segregated domain size or bilayer leaflet uncoupling.


2021 ◽  
pp. 109759
Author(s):  
Lucia Sessa ◽  
Simona Concilio ◽  
Miriam Di Martino ◽  
Anna Maria Nardiello ◽  
Ylenia Miele ◽  
...  
Keyword(s):  
Nile Red ◽  

Sign in / Sign up

Export Citation Format

Share Document