hypoxia reoxygenation
Recently Published Documents


TOTAL DOCUMENTS

1649
(FIVE YEARS 444)

H-INDEX

65
(FIVE YEARS 10)

2022 ◽  
Vol 47 ◽  
pp. 174-179
Author(s):  
Yan Zhao ◽  
Wanrong Yu ◽  
Jiangyun Liu ◽  
Haohao Wang ◽  
Rui Du ◽  
...  

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Gang Gao ◽  
Yufen Duan ◽  
Feng Chang ◽  
Ting Zhang ◽  
Xinhu Huang ◽  
...  

AbstractSpinal cord injury (SCI) is a devastating traumatic condition. METTL14-mediated m6A modification is associated with SCI. This study was intended to investigate the functional mechanism of RNA methyltransferase METTL14 in spinal cord neuron apoptosis during SCI. The SCI rat model was established, followed by evaluation of pathological conditions, apoptosis, and viability of spinal cord neurons. The neuronal function of primary cultured spinal motoneurons of rats was assessed after hypoxia/reoxygenation treatment. Expressions of EEF1A2, Akt/mTOR pathway-related proteins, inflammatory cytokines, and apoptosis-related proteins were detected. EEF1A2 was weakly expressed and Akt/mTOR pathway was inhibited in SCI rat models. Hypoxia/Reoxygenation decreased the viability of spinal cord neurons, promoted LDH release and neuronal apoptosis. EEF1A2 overexpression promoted the viability of spinal cord neurons, inhibited neuronal apoptosis, and decreased inflammatory cytokine levels. Silencing METTL14 inhibited m6A modification of EEF1A2 and increased EEF1A2 expression while METTL14 overexpression showed reverse results. EEF1A2 overexpression promoted viability and inhibited apoptosis of spinal cord neurons and inflammation by activating the Akt/mTOR pathway. In conclusion, silencing METTL14 repressed apoptosis of spinal cord neurons and attenuated SCI by inhibiting m6A modification of EEF1A2 and activating the Akt/mTOR pathway.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Changming Tan ◽  
Jianming Li ◽  
Zhaoshun Yuan ◽  
Yongxin Mu

Abstract Background This study aimed to analyze the role of circular RNA ciRs-126 in hypoxia/reoxygenation cardiac injury (H/R). Methods Expression of ciRs-126 and miR-21 in plasma samples from patients with H/R and healthy controls was determined by RT-qPCR. Correlations were analyzed by linear regression. Overexpression of ciRs-126 and miR-21 was achieved in cardiomyocytes to explore their crosstalk. The roles of ciRs-126 and miR-21 in H/R-induced apoptosis of cardiomyocytes were analyzed using cell apoptosis assay. Results CiRs-126 was upregulated and miR-21 was downregulated in H/R patients. They were inversely correlated across plasma samples from H/R patients. In H/R cardiomyocytes, ciRs-126 was upregulated and miR-21 was downregulated. In cardiomyocytes, ciRs-126 overexpression decreased miR-21 level and reduced the inhibitory effects of miR-21 overexpression on H/R-induced cell apoptosis. Conclusions Circular RNA ciRs-126 may suppress miR-21 expression to promote H/R cardiac injury.


2022 ◽  
Vol 23 (2) ◽  
Author(s):  
Zhengbing Lv ◽  
Xiaojia Luo ◽  
Biying Hong ◽  
Qiran Ye ◽  
Jianxiong Liu ◽  
...  

Bioengineered ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 1320-1334
Author(s):  
Xinming Liu ◽  
Yixing Yang ◽  
Jiawei Song ◽  
Dongjie Li ◽  
Xiaoyan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document