scholarly journals IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana

2009 ◽  
Vol 16 (12) ◽  
pp. 1325-1327 ◽  
Author(s):  
Israel Ausin ◽  
Todd C Mockler ◽  
Joanne Chory ◽  
Steven E Jacobsen
PLoS Genetics ◽  
2010 ◽  
Vol 6 (10) ◽  
pp. e1001182 ◽  
Author(s):  
Ian R. Henderson ◽  
Angelique Deleris ◽  
William Wong ◽  
Xuehua Zhong ◽  
Hang Gyeong Chin ◽  
...  

2016 ◽  
Vol 113 (14) ◽  
pp. E2083-E2092 ◽  
Author(s):  
Mélanie Rigal ◽  
Claude Becker ◽  
Thierry Pélissier ◽  
Romain Pogorelcnik ◽  
Jane Devos ◽  
...  

Genes and transposons can exist in variable DNA methylation states, with potentially differential transcription. How these epialleles emerge is poorly understood. Here, we show that crossing an Arabidopsis thaliana plant with a hypomethylated genome and a normally methylated WT individual results, already in the F1 generation, in widespread changes in DNA methylation and transcription patterns. Novel nonparental and heritable epialleles arise at many genic loci, including a locus that itself controls DNA methylation patterns, but with most of the changes affecting pericentromeric transposons. Although a subset of transposons show immediate resilencing, a large number display decreased DNA methylation, which is associated with de novo or enhanced transcriptional activation and can translate into transposon mobilization in the progeny. Our findings reveal that the combination of distinct epigenomes can be viewed as an epigenomic shock, which is characterized by a round of epigenetic variation creating novel patterns of gene and TE regulation.


2017 ◽  
Author(s):  
James Walker ◽  
Hongbo Gao ◽  
Jingyi Zhang ◽  
Billy Aldridge ◽  
Martin Vickers ◽  
...  

SUMMARYDNA methylation controls eukaryotic gene expression and is extensively reprogrammed to regulate animal development. However, whether developmental methylation reprogramming during the sporophytic life cycle of flowering plants regulates genes is presently unknown. Here we report a distinctive, gene-targeted RNA-directed DNA methylation (RdDM) activity in the Arabidopsis thaliana male sexual lineage that regulates gene expression in meiocytes. Loss of sexual lineage-specific RdDM causes mis-splicing of the MPS1/PRD2 gene, thereby disrupting meiosis. Our results establish a regulatory paradigm in which de novo methylation creates a cell-lineage-specific epigenetic signature that controls gene expression and contributes to cellular function in flowering plants.


Sign in / Sign up

Export Citation Format

Share Document