methylation activity
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Shan Qi ◽  
Javier Mota ◽  
Siu-Hong Chan ◽  
Johanna Villarreal ◽  
Nan Dai ◽  
...  

Methyltransferase like-3 (METTL3) and METTL14 complex transfers a methyl group from S-adenosyl-L-methionine to N6 amino group of adenosine bases in RNA (m6A) and DNA (m6dA). Emerging evidence highlights a role of METTL3-METTL14 in the chromatin context, especially in processes where DNA and RNA are held in close proximity. However, a mechanistic framework about specificity for substrate RNA/DNA and their interrelationship remain unclear. By systematically studying methylation activity and binding affinity to a number of DNA and RNA oligos with different propensities to form inter- or intra-molecular duplexes or single-stranded molecules in vitro, we uncover an inverse relationship for substrate binding and methylation and show that METTL3-METTL14 preferentially catalyzes the formation of m6dA in single-stranded DNA (ssDNA), despite weaker binding affinity to DNA. In contrast, it binds structured RNAs with high affinity, but methylates the target adenosine in RNA (m6A) much less efficiently than it does in ssDNA. We also show that METTL3-METTL14-mediated methylation of DNA is largely restricted by structured RNA elements prevalent in long noncoding and other cellular RNAs.


2021 ◽  
Author(s):  
Nastassia Knoedlseder ◽  
Guillermo Nevot ◽  
Mariajosé Fábrega ◽  
Júlia Mir-Pedrol ◽  
Marta Sanvicente ◽  
...  

Cutibacterium acnes (C. acnes) is a gram-positive bacterium and a member of the human skin microbiome. Despite being the most abundant skin commensal, certain members have been associated with common inflammatory disorders such as acne vulgaris. The availability of the complete genome sequences from various C. acnes clades have enabled the identification of putative methyltransferases, some of them potentially belonging to restriction-modification (R-M) systems which protect the host of invading DNA. However, little is known on whether these systems are functional in the different C. acnes strains. To investigate the activity of these putative R-M and their relevance in host protective mechanisms, we analyzed the methylome of seven representative C. acnes strains by Oxford Nanopore Technologies (ONT) sequencing. We detected the presence of a 6-methyladenine modification at a defined DNA consensus sequence in strain KPA171202 and recombinant expression of this R-M system confirmed its methylation activity. Additionally, a R-M knockout mutant verified the loss of methylation properties of the strain. We studied the potential of one C. acnes bacteriophage (PAD20) in killing various C. acnes strains and linked an increase in its specificity to phage DNA methylation acquired upon infection of a methylation competent strain. We demonstrate a therapeutic application of this mechanism where phages propagated in R-M deficient strains selectively kill R-M deficient acne-prone clades while probiotic ones remain resistant to phage infection.


Author(s):  
Anna Ma. Cueto-González ◽  
Paula Fernández-Álvarez ◽  
Irene Valenzuela Palafoll ◽  
Amaia Lasa-Aranzasti ◽  
Teresa Vendrell Bayona ◽  
...  

2021 ◽  
Author(s):  
Honglei Ren ◽  
Robert B. Taylor ◽  
Timothy L. Downing ◽  
Elizabeth Read

DNA methylation occurs predominantly on cytosine-phosphate-guanine (CpG) dinucleotides in the mammalian genome, and the methylation landscape is maintained over mitotic cell division. It has been posited that coupling of methylation activity among neighboring CpGs is critical to collective stability over cellular generations, however the mechanism of this coupling is unclear. We used mathematical models and stochastic simulation to analyze data from experiments that probe genome-wide methylation of nascent DNA post-replication. We find that DNA methylation maintenance shows genomic-region-specific kinetics, indicating influence of local CpG density and chromatin accessibility on methyltransferase activity and inter-CpG coupling. We uncover evidence of processive methylation kinetics in post-replication DNA, which manifests as exponential decay of methylation rate correlation on neighboring CpGs. Our results indicate that processivity is a component of inter-CpG-coupling that occurs globally throughout the genome, but other mechanisms of coupling dominate for inter-CpG distances past $\sim$ 100 basepairs. By decomposing local methylation correlations into processive and non-processive components, we estimate that an individual methyltransferase methylates neighbor CpGs in sequence if they are 36 basepairs apart, on average. Our study demonstrates that detailed information on epigenomic dynamics can be gleaned from replication-associated, cell-based genome-wide measurements, by combining data-driven statistical analyses with hypothesis-driven mathematical modeling.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1837
Author(s):  
Neda Sanobar ◽  
Pin-Chun Lin ◽  
Zhao-Jun Pan ◽  
Ru-Ying Fang ◽  
Veny Tjita ◽  
...  

In plants, HEN1-facilitated methylation at 3′ end ribose is a critical step of small-RNA (sRNA) biogenesis. A mutant of well-studied Arabidopsis HEN1 (AtHEN1), hen1-1, showed a defective developmental phenotype, indicating the importance of sRNA methylation. Moreover, Marchantia polymorpha has been identified to have a HEN1 ortholog gene (MpHEN1); however, its function remained unfathomed. Our in vivo and in vitro data have shown MpHEN1 activity being comparable with AtHEN1, and their substrate specificity towards duplex microRNA (miRNA) remained consistent. Furthermore, the phylogenetic tree and multiple alignment highlighted the conserved molecular evolution of the HEN1 family in plants. The P1/HC-Pro of the turnip mosaic virus (TuMV) is a known RNA silencing suppressor and inhibits HEN1 methylation of sRNAs. Here, we report that the HC-Pro physically binds with AtHEN1 through FRNK motif, inhibiting HEN1’s methylation activity. Moreover, the in vitro EMSA data indicates GST-HC-Pro of TuMV lacks sRNA duplex-binding ability. Surprisingly, the HC-Pro also inhibits MpHEN1 activity in a dosage-dependent manner, suggesting the possibility of interaction between HC-Pro and MpHEN1 as well. Further investigations on understanding interaction mechanisms of HEN1 and various HC-Pros can advance the knowledge of viral suppressors.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3830
Author(s):  
Seo-Yeon Seonu ◽  
Min-Ji Kim ◽  
Jun Yin ◽  
Min-Won Lee

Alnus sibirica (AS) is distributed in Korea, Japan, China, and Russia and has reported anti-oxidant, anti-inflammatory, and reducing activities on atopic dermatitis-like skin lesions, along with other beneficial health properties. In the present study, we tried to prove the cancer-preventive activity against prostate cancer. The extracted and isolated compounds, oregonin (1), hirsutenone (2), and hirsutanonol (3), which were isolated from AS, were tested for anti-proliferative activity. To do this, we used the MTT assay; NF-κB inhibitory activity, using Western blotting; apoptosis-inducing activity using flow cytometry; DNA methylation activity, using methylation-specific polymerase chain reaction in androgen-dependent (LNCaP) and androgen-independent (PC-3) prostate cancer cell lines. The compounds (1–3) showed potent anti-proliferative activity against both prostate cancer cell lines. Hirsutenone (2) exhibited the strongest NF-κB inhibitory and apoptosis-inducing activities compared with oregonin (1) and hirsutanonol (3). DNA methylation activity, which was assessed for hirsutenone (2), revealed a concentration-dependent enhancement of the unmethylated DNA content and a reduction in the methylated DNA content in both PC-3 and LNCaP cells. Overall, these findings suggest that hirsutenone (2), when isolated from AS, may be a potential agent for preventing the development or progression of prostate cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Laurin Flemmich ◽  
Sarah Heel ◽  
Sarah Moreno ◽  
Kathrin Breuker ◽  
Ronald Micura

AbstractMethylation is a prevalent post-transcriptional modification encountered in coding and non-coding RNA. For RNA methylation, cells use methyltransferases and small organic substances as methyl-group donors, such as S-adenosylmethionine (SAM). SAM and other nucleotide-derived cofactors are viewed as evolutionary leftovers from an RNA world, in which riboswitches have regulated, and ribozymes have catalyzed essential metabolic reactions. Here, we disclose the thus far unrecognized direct link between a present-day riboswitch and its inherent reactivity for site-specific methylation. The key is O6-methyl pre-queuosine (m6preQ1), a potentially prebiotic nucleobase which is recognized by the native aptamer of a preQ1 class I riboswitch. Upon binding, the transfer of the ligand’s methyl group to a specific cytidine occurs, installing 3-methylcytidine (m3C) in the RNA pocket under release of pre-queuosine (preQ1). Our finding suggests that nucleic acid-mediated methylation is an ancient mechanism that has offered an early path for RNA epigenetics prior to the evolution of protein methyltransferases. Furthermore, our findings may pave the way for the development of riboswitch-descending methylation tools based on rational design as a powerful alternative to in vitro selection approaches.


Author(s):  
Chuck Haggerty ◽  
Helene Kretzmer ◽  
Christina Riemenschneider ◽  
Abhishek Sampath Kumar ◽  
Alexandra L. Mattei ◽  
...  

AbstractDNA methylation plays a critical role during development, particularly in repressing retrotransposons. The mammalian methylation landscape is dependent on the combined activities of the canonical maintenance enzyme Dnmt1 and the de novo Dnmts, 3a and 3b. Here, we demonstrate that Dnmt1 displays de novo methylation activity in vitro and in vivo with specific retrotransposon targeting. We used whole-genome bisulfite and long-read Nanopore sequencing in genetically engineered methylation-depleted mouse embryonic stem cells to provide an in-depth assessment and quantification of this activity. Utilizing additional knockout lines and molecular characterization, we show that the de novo methylation activity of Dnmt1 depends on Uhrf1, and its genomic recruitment overlaps with regions that enrich for Uhrf1, Trim28 and H3K9 trimethylation. Our data demonstrate that Dnmt1 can catalyze DNA methylation in both a de novo and maintenance context, especially at retrotransposons, where this mechanism may provide additional stability for long-term repression and epigenetic propagation throughout development.


2021 ◽  
Author(s):  
Holly M. Funk ◽  
Daisy J. DiVita ◽  
Hannah E. Sizemore ◽  
Kendal Wehrle ◽  
Catherine L. Weiner ◽  
...  

Posttranscriptional tRNA modifications are essential for proper gene expression, and defects in the enzymes that perform tRNA modifications are associated with numerous human disorders. Throughout eukaryotes, 2′-O-methylation of residues 32 and 34 of the anticodon loop of tRNA is important for proper translation, and in humans, lack of these modifications results in non-syndromic X-linked intellectual disability. In yeast, the methyltransferase Trm7 forms a complex with Trm732 to 2′-O-methylate tRNA residue 32 and with Trm734 to 2′-O-methylate tRNA residue 34. Trm732 and Trm734 are required for the methylation activity of Trm7, but the role of these auxiliary proteins is not clear. Additionally, Trm732 and Trm734 homologs are implicated in biological processes not directly related to translation, suggesting that these proteins may have additional cellular functions. To identify critical amino acids in Trm732, we generated variants and tested their ability to function in yeast cells. We identified a conserved RRSAGLP motif in the conserved DUF2428 domain of Trm732 that is required for tRNA modification activity by both yeast Trm732 and its human homolog THADA. The identification of Trm732 variants that lack tRNA modification activity will help to determine if other biological functions ascribed to Trm732 and THADA are directly due to tRNA modification, or to secondary effects due to other functions of these proteins.


2021 ◽  
Author(s):  
Kevin M. Creamer ◽  
Eric C. Larsen ◽  
Jeanne B. Lawrence

Repetitive sequences including transposable elements (TEs) and transposon-derived fragments account for nearly half of the human genome. While transposition-competent TEs must be repressed to maintain genomic stability, mutated and fragmented TEs comprising the bulk of repetitive sequences can also contribute to regulation of host gene expression and broader genome organization. Here we analyzed published ChIP-seq data sets to identify proteins broadly enriched on TEs in the human genome. We show two of the proteins identified, C2H2 zinc finger-containing proteins ZNF146 (also known as OZF) and ZNF507, are targeted to distinct sites within LINE-1 ORF2 at thousands of locations in the genome. ZNF146 binding sites are found at old and young LINE-1 elements. In contrast, ZNF507 preferentially binds at young LINE-1 sequences correlated to sequence changes in LINE-1 elements at ZNF507s binding site. To gain further insight into ZNF146 and ZNF507 function, we disrupt their expression in HEK293 cells using CRISPR/Cas9 and perform RNA sequencing, finding modest gene expression changes in cells where ZNF507 has been disrupted. We further identify a physical interaction between ZNF507 and PRMT5, suggesting ZNF507 may target arginine methylation activity to LINE-1 sequences.


Sign in / Sign up

Export Citation Format

Share Document