scholarly journals Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids

2016 ◽  
Vol 113 (14) ◽  
pp. E2083-E2092 ◽  
Author(s):  
Mélanie Rigal ◽  
Claude Becker ◽  
Thierry Pélissier ◽  
Romain Pogorelcnik ◽  
Jane Devos ◽  
...  

Genes and transposons can exist in variable DNA methylation states, with potentially differential transcription. How these epialleles emerge is poorly understood. Here, we show that crossing an Arabidopsis thaliana plant with a hypomethylated genome and a normally methylated WT individual results, already in the F1 generation, in widespread changes in DNA methylation and transcription patterns. Novel nonparental and heritable epialleles arise at many genic loci, including a locus that itself controls DNA methylation patterns, but with most of the changes affecting pericentromeric transposons. Although a subset of transposons show immediate resilencing, a large number display decreased DNA methylation, which is associated with de novo or enhanced transcriptional activation and can translate into transposon mobilization in the progeny. Our findings reveal that the combination of distinct epigenomes can be viewed as an epigenomic shock, which is characterized by a round of epigenetic variation creating novel patterns of gene and TE regulation.

PLoS Genetics ◽  
2010 ◽  
Vol 6 (10) ◽  
pp. e1001182 ◽  
Author(s):  
Ian R. Henderson ◽  
Angelique Deleris ◽  
William Wong ◽  
Xuehua Zhong ◽  
Hang Gyeong Chin ◽  
...  

2020 ◽  
Vol 48 (7) ◽  
pp. 3949-3961 ◽  
Author(s):  
Chien-Chu Lin ◽  
Yi-Ping Chen ◽  
Wei-Zen Yang ◽  
James C K Shen ◽  
Hanna S Yuan

Abstract DNA methyltransferases are primary enzymes for cytosine methylation at CpG sites of epigenetic gene regulation in mammals. De novo methyltransferases DNMT3A and DNMT3B create DNA methylation patterns during development, but how they differentially implement genomic DNA methylation patterns is poorly understood. Here, we report crystal structures of the catalytic domain of human DNMT3B–3L complex, noncovalently bound with and without DNA of different sequences. Human DNMT3B uses two flexible loops to enclose DNA and employs its catalytic loop to flip out the cytosine base. As opposed to DNMT3A, DNMT3B specifically recognizes DNA with CpGpG sites via residues Asn779 and Lys777 in its more stable and well-ordered target recognition domain loop to facilitate processive methylation of tandemly repeated CpG sites. We also identify a proton wire water channel for the final deprotonation step, revealing the complete working mechanism for cytosine methylation by DNMT3B and providing the structural basis for DNMT3B mutation-induced hypomethylation in immunodeficiency, centromere instability and facial anomalies syndrome.


2021 ◽  
Author(s):  
Jincheng Long ◽  
James Walker ◽  
Wenjing She ◽  
Billy Aldridge ◽  
Hongbo Gao ◽  
...  

AbstractThe plant male germline undergoes DNA methylation reprogramming, which methylates genes de novo and thereby alters gene expression and facilitates meiosis. Why reprogramming is limited to the germline and how specific genes are chosen is unknown. Here, we demonstrate that genic methylation in the male germline, from meiocytes to sperm, is established by germline-specific siRNAs transcribed from transposons with imperfect sequence homology. These siRNAs are synthesized by meiocyte nurse cells (tapetum) via activity of the tapetum-specific chromatin remodeler CLASSY3. Remarkably, tapetal siRNAs govern germline methylation throughout the genome, including the inherited methylation patterns in sperm. Finally, we demonstrate that these nurse cell-derived siRNAs (niRNAs) silence germline transposons, thereby safeguarding genome integrity. Our results reveal that tapetal niRNAs are sufficient to reconstitute germline methylation patterns and drive extensive, functional methylation reprogramming analogous to piRNA-mediated reprogramming in animal germlines.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Shir Toubiana ◽  
Miriam Gagliardi ◽  
Mariarosaria Papa ◽  
Roberta Manco ◽  
Maty Tzukerman ◽  
...  

DNA methyltransferase 3B (DNMT3B) is the major DNMT that methylates mammalian genomes during early development. Mutations in human DNMT3B disrupt genome-wide DNA methylation patterns and result in ICF syndrome type 1 (ICF1). To study whether normal DNA methylation patterns may be restored in ICF1 cells, we corrected DNMT3B mutations in induced pluripotent stem cells from ICF1 patients. Focusing on repetitive regions, we show that in contrast to pericentromeric repeats, which reacquire normal methylation, the majority of subtelomeres acquire only partial DNA methylation and, accordingly, the ICF1 telomeric phenotype persists. Subtelomeres resistant to de novo methylation were characterized by abnormally high H3K4 trimethylation (H3K4me3), and short-term reduction of H3K4me3 by pharmacological intervention partially restored subtelomeric DNA methylation. These findings demonstrate that the abnormal epigenetic landscape established in ICF1 cells restricts the recruitment of DNMT3B, and suggest that rescue of epigenetic diseases with genome-wide disruptions will demand further manipulation beyond mutation correction.


Author(s):  
Adil Altaf ◽  
Ahmad Zada

Common DNA methylation controls gene expression and preserves genomic integrity. Mal methylation can cause developmental abnormalities in the plants. Multiple enzymes carrying out de novo methylation, methylation maintenance, and active demethylation culminate in a particular DNA methylation state. Next-generation sequencing advances and computational methods to analyze the data. The model plant Arabidopsis thaliana was used to study DNA methylation patterns, epigenetic inheritance, and plant methylation. Plant DNA methylation research reveals methylation patterns and describing variations in plant tissues. Determining the kinetics of DNA methylation in diverse plant tissues is also a new field. However, it is vital to understand regulatory and developmental decisions and use plant model species to develop new commercial crops; that are more resistant to stress and yield more. There are several methods available for assessing DNA methylation data. The performance of several techniques is assessed in A. thaliana, which has a smaller genome than hexaploid bread wheat. Keywords: DNA methylation, plants, process, use and benefits


2010 ◽  
Vol 38 (12) ◽  
pp. 3880-3890 ◽  
Author(s):  
E. Schneider ◽  
G. Pliushch ◽  
N. El Hajj ◽  
D. Galetzka ◽  
A. Puhl ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2498-2498
Author(s):  
Claudia Gebhard ◽  
Mohammed Sadeh ◽  
Dagmar Glatz ◽  
Lucia Schwarzfischer ◽  
Rainer Spang ◽  
...  

Abstract Abstract 2498 CpG islands show frequent and often disease-specific epigenetic alterations during malignant transformation, however, the underlying mechanisms are poorly understood. We used methyl-CpG immunoprecipitation (MCIp) to generate comparative DNA methylation profiles of 30 patients with acute myeloid leukemia for human CpG islands across the genome. DNA methylation profiles across 23.000 CpG islands revealed highly heterogeneous methylation patterns in AML with over 6000 CpG islands showing aberrant de novo methylation in AML. Based on these profiles we selected a subset of 380 CpG islands (covering 15.000 individual CpGs) for detailed fine-mapping analyses of aberrant DNA methylation in 185 patients with AML (50% normal karyotype). We found that a proportion of patients (5/185) displayed a concerted hypermethylation at almost all studied loci, representing the rare CpG island methylator phenotype (CIMP) in AML. Meta analysis of methylation profiling and published ChIP sequencing data separated CpG islands in two groups. A highly correlated subgroup of CpG island regions was strongly associated with histone H3 lysine 27 trimethylation in human hematopoietic progenitor cells, suggesting that disease-related de novo DNA methylation at these CpG islands is linked with polycomb group protein (PcG)-mediated repression. The group of mainly non-PcG target CpG islands showed heterogeneous methylation patterns across patients and unsupervised hierarchical clustering revealed a correlation of methylation profiles with genetic disease markers, including oncofusion proteins as well as CEBPA- and NPM1-mutations. Our study suggests that both epigenetic as well as genetic aberrations may underlay AML-related changes in CpG island DNA methylation states. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 70 (3) ◽  
pp. 830-856 ◽  
Author(s):  
Josep Casadesús ◽  
David Low

SUMMARY Like many eukaryotes, bacteria make widespread use of postreplicative DNA methylation for the epigenetic control of DNA-protein interactions. Unlike eukaryotes, however, bacteria use DNA adenine methylation (rather than DNA cytosine methylation) as an epigenetic signal. DNA adenine methylation plays roles in the virulence of diverse pathogens of humans and livestock animals, including pathogenic Escherichia coli, Salmonella, Vibrio, Yersinia, Haemophilus, and Brucella. In Alphaproteobacteria, methylation of adenine at GANTC sites by the CcrM methylase regulates the cell cycle and couples gene transcription to DNA replication. In Gammaproteobacteria, adenine methylation at GATC sites by the Dam methylase provides signals for DNA replication, chromosome segregation, mismatch repair, packaging of bacteriophage genomes, transposase activity, and regulation of gene expression. Transcriptional repression by Dam methylation appears to be more common than transcriptional activation. Certain promoters are active only during the hemimethylation interval that follows DNA replication; repression is restored when the newly synthesized DNA strand is methylated. In the E. coli genome, however, methylation of specific GATC sites can be blocked by cognate DNA binding proteins. Blockage of GATC methylation beyond cell division permits transmission of DNA methylation patterns to daughter cells and can give rise to distinct epigenetic states, each propagated by a positive feedback loop. Switching between alternative DNA methylation patterns can split clonal bacterial populations into epigenetic lineages in a manner reminiscent of eukaryotic cell differentiation. Inheritance of self-propagating DNA methylation patterns governs phase variation in the E. coli pap operon, the agn43 gene, and other loci encoding virulence-related cell surface functions.


Sign in / Sign up

Export Citation Format

Share Document