scholarly journals High-resolution, in vivo multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence microscopy imaging of rabbit retinal neovascularization

2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Wei Zhang ◽  
Yanxiu Li ◽  
Van Phuc Nguyen ◽  
Ziyi Huang ◽  
Zhipeng Liu ◽  
...  
2020 ◽  
Vol 245 (4) ◽  
pp. 342-347 ◽  
Author(s):  
Arash Dadkhah ◽  
Shuliang Jiao

We have developed a multimodal imaging system, which integrated optical resolution photoacoustic microscopy, optical coherence tomography, optical coherence tomography angiography, and confocal fluorescence microscopy in one platform. The system is able to image complementary features of a biological sample by combining different contrast mechanisms. We achieved fast imaging and large field of view by combining optical scanning with mechanical scanning, similar to our previous publication. We have demonstrated the capability of the multimodal imaging system by imaging a mouse ear in vivo. Impact statement Photoacoustic microscopy-based multimodal imaging technology can provide high-resolution complementary information for biological tissues in vivo. It will potentially bring significant impact on the research and diagnosis of diseases by providing combined structural and functional information.


2018 ◽  
Vol 4 (12) ◽  
pp. 150 ◽  
Author(s):  
Van Nguyen ◽  
Yanxiu Li ◽  
Michael Aaberg ◽  
Wei Zhang ◽  
Xueding Wang ◽  
...  

The pathological process of neovascularization of the retina plays a critical role in causing vision loss in several diseases, including diabetes, retinal vein occlusion, and sickle cell disease. Retinal neovascularization can lead to vitreous hemorrhage and retinal detachment, yet the pathological process of neovascularization is a complex phenomenon under active investigation. Understanding and monitoring retinal neovascularization is critically important in clinical ophthalmology. This study describes a novel multimodal ocular imaging system which combines photoacoustic microscopy (PAM) and a spectral domain optical coherence tomography (SD-OCT) to improve the visualization of retinal neovascularization (RNV), their depth, and the surrounding anatomy in living rabbits. RNV was induced in New Zealand rabbits by intravitreal injection of vascular endothelial growth factor (VEGF). The retinal vasculature before and after injection at various times was monitored and evaluated using multimodal imaging including color fundus photography, fluorescein angiography (FA), OCT, and PAM. In vivo experiments demonstrate that PAM imaging distinctly characterized the location as well as the morphology of individual RNV with high contrast at a safe laser energy of 80 nJ. SD-OCT was used to identify a cross-sectional structure of RNV. In addition, dynamic changes in the retinal morphology and retinal neovascularization were observed at day 4, 5, 6, 7, 9, 11, 14, 28, and day 35 after VEGF injection. PAM demonstrated high-resolution optical absorption of hemoglobin and vascular imaging of the retina and choroid with increased depth of penetration. With the current multimodal imaging system, RNV can be easily visualized in both 2D and 3D angiography. This multimodal ocular imaging system provides improved characterization of the microvasculature in a safe manner in larger rabbit eyes.


2020 ◽  
Vol 21 (18) ◽  
pp. 6508
Author(s):  
Van Phuc Nguyen ◽  
Yanxiu Li ◽  
Jessica Henry ◽  
Wei Zhang ◽  
Xueding Wang ◽  
...  

Photoacoustic microscopy is a novel, non-ionizing, non-invasive imaging technology that evaluates tissue absorption of short-pulsed light through the sound waves emitted by the tissue and has numerous biomedical applications. In this study, a custom-built multimodal imaging system, including photoacoustic microscopy (PAM) and optical coherence tomography (OCT), has been developed to evaluate choroidal vascular occlusion (CVO). CVO was performed on three living rabbits using laser photocoagulation. Longitudinal imaging of CVO was obtained using multiple imaging tools such as color fundus photography, fluorescein angiography, indocyanine green angiography (ICGA), OCT, and PAM. PAM images were acquired at different wavelengths, ranging from 532 to 700 nm. The results demonstrate that the CVO was clearly observed on PAM in both two dimensions (2D) and 3D with high resolution longitudinally over 28 days. In addition, the location and margin of the CVO were distinguished from the surrounding choroidal vasculature after the injection of ICG contrast agent. PAM imaging was achieved using a laser energy of approximately 80 nJ, which is about half of the American National Standards Institute safety limit. The proposed imaging technique may provide a potential tool for the evaluation of different chorioretinal vascular disease pathogeneses and other biological studies.


Sign in / Sign up

Export Citation Format

Share Document