safety evaluation
Recently Published Documents





2022 ◽  
Vol 71 (1) ◽  
pp. 1-8
Sho Tomita ◽  
Kei Higashikawa ◽  
Yuki Mizuno ◽  
Tetsuroh Tada ◽  
Shusaku Tazawa ◽  

2022 ◽  
Vol 165 ◽  
pp. 106528
Kojiro Matsuo ◽  
Naoki Chigai ◽  
Moazam Irshad Chattha ◽  
Nao Sugiki

Xinya Liu ◽  
Chung C. Fu ◽  
Yunchao Ye ◽  
Chaoran Xu ◽  
Faramarz Sadeghi-Bajgiran

Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 38
Hae-Sung Yang ◽  
Kyeong-Min Kim ◽  
Napissara Boonpraman ◽  
Sun-Mi Yoon ◽  
Jeong-Eun Seo ◽  

Since the onset of the COVID-19 pandemic, there has been a growing demand for effective and safe disinfectants. A novel use of chlorine dioxide (ClO2) gas, which can satisfy such demand, has been reported. However, its efficacy and safety remain unclear. For the safe use of this gas, the stable release of specific concentrations is a must. A new type of ClO2 generator called Dr.CLOTM has recently been introduced. This study aimed to investigate: (1) the effects of Dr.CLOTM on inhibiting adenoviral amplification on human bronchial epithelial (HBE) cells; and (2) the acute inhalation safety of using Dr.CLOTM in animal models. After infecting HBE cells with a recombinant adenovirus, the inhibitory power of Dr.CLOTM on the virus was expressed as IFU/mL in comparison with the control group. The safety of ClO2 gas was indirectly predicted using mice by measuring single-dose inhalation toxicity in specially designed chambers. Dr.CLOTM was found to evaporate in a very constant concentration range at 0–0.011 ppm/m3 for 42 days. In addition, 36–100% of adenoviral amplification was suppressed by Dr.CLOTM, depending on the conditions. The LC50 of ClO2 gas to mice was approximately 68 ppm for males and 141 ppm for females. Histopathological evaluation showed that the lungs of female mice were more resistant to the toxicity from higher ClO2 gas concentrations than those of male mice. Taken together, these results indicate that Dr.CLOTM can be used to provide a safe indoor environment due to its technology that maintains the stable concentration and release of ClO2 gas, which could suppress viral amplification and may prevent viral infections.

2022 ◽  
Vol 12 ◽  
Dongyang Zhou ◽  
Hao Zhang ◽  
Xu Xue ◽  
Yali Tao ◽  
Sicheng Wang ◽  

Chronic skeletal disorders (CSDs), including degenerative diseases such as osteoporosis (OP) and autoimmune disorders, have become a leading cause of disability in an ageing society, with natural drugs being indispensable therapeutic options. The clinical safety evaluation (CSE) of natural drugs in CSDs has been given priority and has been intensively studied. To provide fundamental evidence for the clinical application of natural drugs in the elderly population, clinical studies of natural drugs in CSDs included in this review were selected from CNKI, Web of Science, PubMed, Science Direct and Google Scholar since 2001. Seventeen randomized controlled trials (RCTs) met our inclusion criteria: four articles were on OP, seven on osteoarthritis (OA), four on rheumatoid arthritis (RA) and two on gout. Common natural drugs used for the treatment of OP include Epimedium brevicornu Maxim [Berberidaceae], Dipsacus asper Wall ex DC [Caprifoliaceae] root, and Phalaenopsis cornu-cervi (Breda) Blume & Rchb. f[ Orchidaceae], which have been linked to several mild adverse reactions, such as skin rash, gastric dysfunction, abnormal urine, constipation and irritability. The safety of Hedera helix L [Araliaceae] extract, Boswellia serrata Roxb [Burseraceae] extract and extract from perna canaliculus was evaluated in OA and upper abdominal pain, and unstable movements were obsrerved as major side effects. Adverse events, including pneumonia, vomiting, diarrhoea and upper respiratory tract infection, were reported when RA was treated with Tripterygium wilfordii, Hook. F [Celastraceae][TwHF] polyglycosides and quercetin (Capsella bursa-pastoris (L.) Medik [Brassicaceae]). The present review aimed to summarize the CSE results of natural drugs in CSDs and could provide evidence-based information for clinicians.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 520
Yong Ho Chung ◽  
Won-Ju Lee ◽  
Jun Kang ◽  
Sung Hwan Yoon

Ammonia combustion is a promising energy source as a carbon free fuel without greenhouse gas emissions. However, since the auto-ignition temperature is 651 degrees Celsius and the range of flammability limit is not wide compared to other fuels, fundamental studies on ammonia fires have rarely been conducted so far. Therefore, this study aims to numerically estimate fire spread characteristics when ammonia fuel in a high-pressure state leaks to the outside, especially focusing on the flammability limit according to oxygen concentration. Three kinds of reaction mechanism for numerical analysis were adopted to compare the flame structure, flammability limit, and combustion characteristics. Plank-mean absorption coefficients of nitrogen species were taken for the radiation model, in addition to the optically thin model. The effect of radiation heat loss could be identified from the maximum flame temperature trend at a low strain rate. It was confirmed that the pyrolysis of ammonia in the preheated zone results in hydrogen production, and the generated hydrogen contributes to heat release rate in the flame zone. It is found that the contribution of hydrogen would be an important role in the flammability limit of ammonia combustion. Finally, Karlovitz and Peclet numbers showed well the extinction behaviors of ammonia combustion as a result of LOC (Limit Oxygen Concentration) analysis as a function of global strain rate.

Sign in / Sign up

Export Citation Format

Share Document